[HTML][HTML] FOXM1 regulates glycolysis and energy production in multiple myeloma

Y Cheng, F Sun, K Thornton, X Jing, J Dong, G Yun… - Oncogene, 2022 - nature.com
Y Cheng, F Sun, K Thornton, X Jing, J Dong, G Yun, M Pisano, F Zhan, SH Kim…
Oncogene, 2022nature.com
The transcription factor, forkhead box M1 (FOXM1), has been implicated in the natural
history and outcome of newly diagnosed high-risk myeloma (HRMM) and relapsed/refractory
myeloma (RRMM), but the mechanism with which FOXM1 promotes the growth of neoplastic
plasma cells is poorly understood. Here we show that FOXM1 is a positive regulator of
myeloma metabolism that greatly impacts the bioenergetic pathways of glycolysis and
oxidative phosphorylation (OxPhos). Using FOXM1-deficient myeloma cells as principal …
Abstract
The transcription factor, forkhead box M1 (FOXM1), has been implicated in the natural history and outcome of newly diagnosed high-risk myeloma (HRMM) and relapsed/refractory myeloma (RRMM), but the mechanism with which FOXM1 promotes the growth of neoplastic plasma cells is poorly understood. Here we show that FOXM1 is a positive regulator of myeloma metabolism that greatly impacts the bioenergetic pathways of glycolysis and oxidative phosphorylation (OxPhos). Using FOXM1-deficient myeloma cells as principal experimental model system, we find that FOXM1 increases glucose uptake, lactate output, and oxygen consumption in myeloma. We demonstrate that the novel 1,1-diarylethylene small-compound FOXM1 inhibitor, NB73, suppresses myeloma in cell culture and human-in-mouse xenografts using a mechanism that includes enhanced proteasomal FOXM1 degradation. Consistent with the FOXM1-stabilizing chaperone function of heat shock protein 90 (HSP90), the HSP90 inhibitor, geldanamycin, collaborates with NB73 in slowing down myeloma. These findings define FOXM1 as a key driver of myeloma metabolism and underscore the feasibility of targeting FOXM1 for new approaches to myeloma therapy and prevention.
nature.com