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Recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) is generally an incurable disease,
with patients experiencing median survival of under 10 months and significant morbidity. While immune checkpoint
blockade (ICB) drugs are effective in approximately 20% of patients, the remaining experience limited clinical benefit and
are exposed to potential adverse effects and financial costs. Clinically approved biomarkers, such as tumor mutational
burden (TMB), have a modest predictive value in HNSCC.

We analyzed clinical and genomic features, generated using whole-exome sequencing, in 133 ICB-treated patients with
R/M HNSCC, of whom 69 had virus-associated and 64 had non-virus-associated tumors.

Hierarchical clustering of genomic data revealed 6 molecular subtypes characterized by a wide range of objective
response rates and survival after ICB therapy. The prognostic importance of these 6 subtypes was validated in an
external cohort. A random forest-based predictive model, using several clinical and genomic features, predicted
progression-free survival (PFS), overall survival (OS), and response with greater accuracy than did a model based on
TMB alone. Recursive partitioning analysis identified 3 features (systemic inflammatory response index, TMB, and
smoking signature) that classified patients into risk groups with accurate […]
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BACKGROUND. Recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) is generally an incurable 
disease, with patients experiencing median survival of under 10 months and significant morbidity. While immune checkpoint 
blockade (ICB) drugs are effective in approximately 20% of patients, the remaining experience limited clinical benefit and are 
exposed to potential adverse effects and financial costs. Clinically approved biomarkers, such as tumor mutational burden 
(TMB), have a modest predictive value in HNSCC.

METHODS. We analyzed clinical and genomic features, generated using whole-exome sequencing, in 133 ICB-treated patients 
with R/M HNSCC, of whom 69 had virus-associated and 64 had non-virus-associated tumors.

RESULTS. Hierarchical clustering of genomic data revealed 6 molecular subtypes characterized by a wide range of objective 
response rates and survival after ICB therapy. The prognostic importance of these 6 subtypes was validated in an external 
cohort. A random forest-based predictive model, using several clinical and genomic features, predicted progression-free 
survival (PFS), overall survival (OS), and response with greater accuracy than did a model based on TMB alone. Recursive 
partitioning analysis identified 3 features (systemic inflammatory response index, TMB, and smoking signature) that 
classified patients into risk groups with accurate discrimination of PFS and OS.

CONCLUSION. These findings shed light on the immunogenomic characteristics of HNSCC tumors that drive differential 
responses to ICB and identify a clinical-genomic classifier that outperformed the current clinically approved biomarker of 
TMB. This validated predictive tool may help with clinical risk stratification in patients with R/M HNSCC for whom ICB is 
being considered.
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HNSCC treated with ICB are shown in Table 1. Most patients 
received anti–programmed cell death 1 (anti–PD-1) or anti–PD-L1 
monotherapy (126 of 133, 95%), 1 patient (1%) received anticyto-
toxic T lymphocyte–associated protein 4 (CTLA-4) monotherapy, 
and 6 patients (5%) were treated with concurrent anti–PD-1/anti–
PD-L1 and anti–CTLA-4. Most patients (129, 97%) had previous-
ly received chemotherapy. Of these, 122 patients (95%) received 
platinum-based chemotherapy, with 48 patients (39%) starting 
immunotherapy within 6 months of the last platinum dose.

The objective response rate (ORR, defined as a complete or 
partial response by Response Evaluation Criteria in Solid Tumors 
1.1 [RECIST 1.1] criteria) (17) was 24% (32 patients), and the rate of 
clinical benefit (defined as an objective response or stable disease 
>6 months) was 28% (37 patients). Kaplan-Meier estimates of the 
6-month, 1-year, and 2-year progression-free survival (PFS) and 
overall survival (OS) are shown in Figure 1A and Table 2.

A subgroup of HNSCC tumors develop from infection with 
oncogenic viruses — HPV (most commonly in oropharyngeal 
tumors) or EBV (in nasopharyngeal carcinoma). Virus-associated 
tumors have prognostic profiles distinct from those of tumors with 
a nonviral etiology (2, 18, 19). In this study, 64 tumors (48%) were 
not associated with oncogenic viruses (virus-negative [V-nega-
tive]), 56 tumors (42%) were HPV associated (48 oropharynx, 8 
from other subsites), and 13 tumors (10%) were EBV associated (all 
nasopharynx). The ORR was numerically higher in patients with 
EBV-positive (38%) or HPV-positive (27%) tumors compared with 
virus-negative tumors (19%), but this difference was not statisti-
cally significant (P = 0.25) (Figure 1B). Similarly, PFS did not differ 
to a statistically significant degree based on viral status. However, 
OS was significantly superior in both the EBV-positive (HR, 0.37 
[95% CI: 0.17–0.78]) and HPV-positive (HR, 0.59 [95% CI: 0.40–
0.88]) populations compared with the V-negative population (Fig-
ure 1B). PFS and OS were not significantly different between the 
EBV-positive (median, 2.3 [95% CI: 1.9–∞] and 34.0 [95% CI: 4.5–
∞] months, respectively) and HPV-positive populations (median, 
2.9 [95% CI: 1.9–5.3] and 15.5 [95% CI: 11.4–29.2] months, respec-
tively). Therefore, based on the similar response, progression, and 
survival outcomes, EBV-positive and HPV-positive subpopula-
tions were categorized together as virus-associated (virus-positive 
[V-positive]) HNSCC for downstream analyses (Table 2 and Sup-
plemental Figure 1A; supplemental material available online with 
this article; https://doi.org/10.1172/JCI169823DS1).

A prior study of ICB-treated melanoma patients demonstrat-
ed an association between the occurrence of immune-related 
adverse events (irAEs) and recurrence-free survival (20). In this 
R/M HNSCC cohort, 23% (30 of 133) of patients experienced 
irAEs of any grade after ICB treatment. These patients had a sig-
nificantly higher ORR than did those without irAEs (50% vs. 17%; 
P = 4.3 × 10–4). Similarly, 1-year PFS (30 vs. 17%; P = 0.005) and OS 
(67 vs. 43%; P = 0.044) were significantly superior in the subgroup 
experiencing irAEs. However, these differences were not observed 
after correcting for possible immortal time bias by modeling tox-

Introduction
Head and neck squamous cell carcinoma (HNSCC) describes a 
group of tumors that arise from the mucosal lining of the head and 
neck — specifically, the oral cavity, oropharynx, larynx, hypophar-
ynx, nasopharynx, and sinonasal cavities. This cancer is the seventh 
most common cause of cancer death globally and is responsible 
for 4% of cancer deaths in the United States (1). Of the more than 
400,000 people who will be diagnosed with HNSCC globally this 
year, more than half will experience a recurrence, usually within 2 
years. Recurrent or metastatic (R/M) tumors are generally incurable, 
with a median survival of only 10 months (2–5). Immune checkpoint 
blockade (ICB) has improved outcomes for R/M HNSCC, but only 
15% to 20% of patients respond; most patients do not experience a 
tumor response or any clinical benefit, while being at risk of develop-
ing immune-related adverse events (6, 7). Current immunotherapy 
strategies — broad application of ICB drugs in unselected patients — 
thus expose most patients to toxicity without benefit, at significant 
cost ($100,000 per quality-adjusted life year gained) (8).

Ideally, ICB drugs would be used with greater precision — ear-
lier use in patients likely to benefit, with preferential use of other 
agents in patients for whom benefit is unlikely. However, there are 
no validated predictive biomarkers for ICB in HNSCC. The only 
FDA-approved clinical biomarker for ICB response in solid tumors 
is a high tumor mutational burden (TMB). Unfortunately, the pre-
dictive value of TMB in HNSCC is modest (9). Similarly, the pre-
dictive value of programmed death ligand 1 (PD-L1) expression 
on IHC analyses is low: in meta-analyses, PD-L1 underperforms 
compared with TMB (10). In HNSCC, the predictive value of 
PD-L1 is lower than for other cancer types (10) and is low over-
all (11, 12). Nonetheless, a PD-L1 combined positive score (CPS) 
of 1 or higher does correlate with clinical benefit to PD-1 inhibitor 
drugs and, while imperfect, is widely available to clinicians (13).

More in-depth characterization of clinical and genomic data 
from ICB-treated HNSCC patients is needed. To date, few studies 
have analyzed these features in patients with HNSCC (14–16). Ide-
al biomarkers suitable for clinical decision-making would use data 
potentially available in routine oncologic care: clinical characteris-
tics, laboratory values, and DNA-derived genomic profiling.

To investigate the clinical and genomic biomarkers with the 
highest predictive value in HNSCC, we analyzed whole-exome 
sequencing (WES), clinical, and routine laboratory testing data 
from 133 patients with R/M HNSCC treated with ICB. These data 
were used to define molecular subtypes of HNSCC with relevance 
to ICB response, to construct a predictive model that was vali-
dated in an independent data set, and, finally, to generate a well- 
curated clinical-genomic data resource useful for further bio-
marker development and for guiding the next steps of therapeutic 
investigation of R/M HNSCC.

Results
Characteristics and outcomes of an ICB-treated cohort of patients 
with HNSCC. The clinical characteristics of 133 patients with R/M 
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7.8 × 10–5) (Supplemental Figure 1C) and was higher in patients 
with a 10-or-more pack-year smoking history (median, 3.6 vs. 2.2; 
P = 0.014), among which laryngeal tumors were significantly over-
represented (26% vs. 4%; P < 0.001).

When considering mutated genes individually, V-negative 
HNSCCs were characterized by prevalent (67%) TP53 mutations 
and frequent mutations in CDKN2A (17%) (Figure 2A). In HPV-pos-
itive HNSCC tumors, we observed missense mutations in PIK3CA 
in 21%, along with variants in ZNF750 and EP300, and, in 20% 
and 11% of HNSCCs, respectively. The most frequently mutated 
gene in EBV-positive tumors was TGFBR2 (23%). TERT promoter 
mutations were absent in EBV-positive samples and infrequent in 
HPV-positive samples (4%), but prevalent in V-negative HNSCCs 
(44%) (Figure 2A). TERT promoter mutations were mainly enriched 
in V-negative tumors of the oral cavity: 77% compared with 15% for 
V-negative HNSCCs in other sites (P = 7.3 × 10–7).

We identified the top 4 single base substitution (SBS) muta-
tional signatures defined by the Catalogue of Somatic Mutations 
in Cancer (COSMIC) (23): signatures 1, 2, 4, and 13 (Figure 2A). A 
smoking signature (SBS 4) was more prevalent in V-negative than 
in HPV-positive or EBV-positive tumors (P = 1.8 × 10–5) (Figure 
2C). Conversely, the contribution of signatures associated with 
the apolipoprotein B mRNA–editing enzyme catalytic polypep-
tide-like (APOBEC) (SBS 2 and SBS 13) was relatively low in V-neg-
ative and EBV-positive tumors and high in HPV-positive HNSCC 
(P = 8.2 × 10–6) (Figure 2C), as previously reported (24, 25).

The copy number profiles of V-negative, HPV-positive, and 
EBV-positive HNSCCs are shown in Supplemental Figure 1D. 
V-negative HNSCCs more frequently had a hyperploid (>2.5) 
(26) mean copy number (59%) compared with HPV-positive or 
EBV-positive tumors (27% and 23%, respectively; P = 5.3 × 10–4) 
(Figure 2D). Tumor purity was highest in HPV-positive tumors, 
followed by EBV-positive and V-negative tumors (P = 0.01) 
(Figure 2E). Deletion of 9p24.1 — the locus of CD274 (PD-L1),  
PDCD1LG2 (PD-L2), and JAK2 — was observed in 23 (36%) of 
V-negative, 5 (9%) of HPV-positive, and 2 (15%) of EBV-posi-
tive tumors, a statistically significant difference (P = 0.0012). 
Of note, the fraction of samples with a copy number loss at the 
9p24.1 locus was numerically higher in ICB nonresponders than 
responders with V-negative tumors (40% vs. 17%; P = 0.18) and 
EBV-positive tumors (25% vs. 0; P = 0.49), but not HPV-positive 
tumors (7% vs. 13%; P = 0.60) (Supplemental Figure 1E). The fre-
quency of loss of heterozygosity (LOH) at 1 or more HLA class I 
loci, a cancer immune escape mechanism (27), significantly var-
ied across HNSCCs, with the highest prevalence in HPV-positive 
tumors (41%), followed by V-negative (27%), and EBV-positive 
samples (8%; P = 0.038) (Figure 2A).

Identifying molecular subtypes of HNSCC with relevance to ICB 
response. We next investigated whether features in exome data 
could be used to classify patients into molecular subtypes rele-
vant to immunotherapy response. First, we examined the asso-
ciation between the most prevalent genomic and molecular fea-
tures (among the mutations, copy number alterations, mutational 
signatures, intratumoral heterogeneity [ITH], tumor purity, and 
viral status) and PFS and OS using univariable Cox regression in 
the V-negative and V-positive tumors, separately and combined, to 
identify features with potential predictive value. Ultimately, 14 fea-

icity as a time-dependent covariate (HR, 1.26 [95% CI: 0.74–2.12]; 
P = 0.40 for PFS; HR, 0.91 [95% CI: 0.56–1.48]; P = 0.71 for OS).

Differences in the genomic landscape based on viral etiology. In 
64 V-negative, 56 HPV-positive, and 13 EBV-positive tumors, 
DNA from biopsies was analyzed using deep WES (Figure 2A and 
Supplemental Figure 1B), with median coverage 776× (IQR: 586–
867×). While 1 EBV-positive HNSCC sample was microsatellite 
unstable (Figure 2A) and had an exceptionally high TMB (52.25 
mutations/megabase pair [muts/Mbp]), the cohort median TMB 
was low (3.04 muts/Mbp). In keeping with previous reports (16, 
21, 22), we found that the median TMB differed significantly by 
viral status: highest in V-negative HNSCC (3.72 muts/Mbp [IQR: 
1.88–5.60]), followed by HPV-positive (2.66 mut/Mb [IQR: 1.65–
3.97]), and EBV-positive tumors (1.70 mut/Mb [IQR: 0.87–3.01];  
P = 0.0048). We observed similar differences for median numbers 
of indels and clonal mutations per sample (Figure 2B). TMB var-
ied significantly across HNSCCs from different primary sites (P =  

Table 1. Characteristics of patients in the main cohort (total n = 133)

Characteristic No. of patients (%)
Sex

Female 26 (19.5)
Male 107 (80.5)

Age, median, yr (IQR) 62 (53–69)
Cancer subsite
Oral cavity 31 (23.3)
Oropharynx 52 (39.1)
Nasopharynx 16 (12.0)
Larynx 18 (13.5)
Hypopharynx 5 (3.8)
Sinonasal 9 (6.8)
Multiple sites 1 (0.8)
Unknown 1 (0.8)

Smoking history
Never 61 (45.9)
Ever 72 (54.1)

Viral status
Negative 64 (48.1)
HPV 56 (42.1)
EBV 13 (9.8)

Drug class
PD-1/PD-L1 126 (94.7)
CTLA-4 1 (0.8)
Combo 6 (4.5)

ECOG performance 
status

0 51 (38.4)
1 66 (49.6)
2 16 (12.0)

Stage
Nonmetastatic 22 (16.5)
Metastatic 111 (83.5)

Previous chemotherapy
Yes 129 (97.0)
No 4 (3.0)

ECOG, Eastern Cooperative Oncology Group. See also Supplemental Table 3.
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we divided the 6 subgroups into low-risk (subtypes 3, 4, and 5) and 
high-risk (1, 2, and 6) categories, with differences in ORR, PFS, 
and OS (Figures 3, B and D, and Supplemental Figure 2B).

We profiled each subtype and risk category according to 7 
variables previously described to correlate with ICB response: 
TMB, viral status, APOBEC signature, smoking signature, dele-
tion of 9p24.1 (the locus of the CD247 [PD-L1], PDCD1LG2 [PD-
L2], and JAK2 genes) (28, 29), CD8-positive T cell infiltration on 
IHC analysis, and PD-L1 CPS (Figure 3E and Supplemental Fig-
ure 2C) (15, 16, 29–33). As expected, the PD-L1 CPS was signifi-
cantly lower in tumors with a 9p24.1 deletion (median 1.0 [IQR: 
0.2–7.3]) compared with those without (5.1 [IQR: 1.4–45.0]; P = 
0.039) (Supplemental Figure 2D).

The distribution of these features was more favorable in the 
low-risk tumors compared with high-risk HNSCCs (Figure 3E). 
The most favorable immunogenomic landscape was observed in 
subtype 4 (which had an ORR of 48% and the best PFS and OS). 
These tumors were defined by virus positivity, a high TMB, a strong  

tures (13 genetic features and viral status) were selected and dichot-
omized into “low” or “high” categories on the basis of the thresh-
old that maximally separated PFS. After performing unsupervised 
hierarchical clustering of these 14 features, we identified 6 distinct 
molecular HNSCC subtypes (Figure 3A). Subtypes 1–3 were gener-
ally TP53-mutant, V-negative tumors (13%, 7%, and 4%, respec-
tively, were virus associated), whereas subtypes 4–6 were primarily 
TP53 WT, V-positive (100%, 69%, and 91%, respectively).

The ORR for ICB treatment ranged from 7% (subtype 2) to 
48% (subtype 4) (Figure 3B). In line with the ORR, significant dif-
ferences in PFS were observed (P = 1.9 × 10–4) between the molec-
ular subtypes — the median PFS was 9.1 months (95% CI: 2.0–∞) 
for subtype 4, and 1.7 (95% CI: 1.0–5.3) and 1.7 (95% CI: 1.4–6.8) 
months in subtype groups 1 and 2, respectively. HRs for subtypes 1 
and 2 were 4.42 (95% CI: 2.15–9.05) and 3.76 (95% CI: 1.79–7.90), 
respectively, compared with subtype 4 (Figure 3C). Similar pat-
terns were observed for OS curves per molecular subtype (P = 1.3 × 
10–4) (Supplemental Figure 2A). On the basis of the ORR and PFS, 

Figure 1. Response and survival outcomes for 133 patients with R/M HNSCC (64 V-negative, 56 HPV-positive, and 13 EBV-positive) treated with ICB. (A) 
ORR and Kaplan-Meier estimates for PFS and OS following ICB treatment for all R/M HNSCC patients. (B) ORR, PFS, and OS data for V-negative, HPV-pos-
itive, and EBV-positive tumors separately. The P value in the ORR bar chart was obtained with a Fisher’s exact test with Freeman-Halton extension. HRs 
and 95% CIs for HPV-positive and EBV-positive tumors were calculated relative to V-negative tumors using Cox regression analysis. P values in PFS and OS 
Kaplan-Meier plot were calculated using a log-rank test.
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14, 16). The median TMB was significantly 
higher in responding versus nonrespond-
ing patients with V-positive HNSCC (3.47 
vs. 2.05 muts/Mbp; P = 0.025), but not in 
patients with V-negative HNSCC (4.08 
vs. 3.32 muts/Mbp; P = 0.31) (Figure 4, A 
and B). More specifically, the association 
between TMB and ICB response seemed 
mainly driven by clonal mutations in the 
patients with V-positive HNSCC (median, 
164 per exome in responders vs. 88 in non-
responders; P = 0.0027).

In the V-negative population, we 
found no statistically significant difference 
between responders and nonresponders 
with regard to the PD-L1 CPS (median, 
9.0 vs. 5.0; P = 0.11), CD3-positive T cells 
(median, 1,150 vs. 466 cells/region of 
interest [ROI]; P = 0.43), or CD8-positive T 

cells (median, 140 vs. 202 cells/ROI; P = 0.75) (Figure 4C). How-
ever, in the V-positive subcohort, ICB-responsive patients had a 
significantly higher median CPS (9) and CD3-positive T cell infil-
tration (967 cells/ROI) compared with nonresponders (1.5 and 256 
cells/ROI; P = 0.043 and 0.045, respectively), whereas the CD8- 
positive T cell abundance was not significantly different (median, 
305 cells/ROI in responders vs. 242 in nonresponders; P = 0.29) 
(Figure 4D). Among the population of responders with V-negative or 
V-positive tumors, a greater fraction of the patients had a relatively 
high CPS (using various thresholds), but no statistically significant 
associations (Supplemental Figure 2F). Despite not performing well 
as a dichotomous variable, the overall performance of the CPS as a 
continuous variable was reasonable: area under the receiver operat-
ing characteristic (AUROC) values were 0.69 for response, 0.61 for 
6-month PFS, and 0.68 for 12-month OS (Figure 4E).

An integrated clinical-genomic model predicts survival after ICB 
treatment in HNSCC. The predictive capability of the previously 
described biomarkers was modest, consistent with the hypoth-
esis that the immunotherapy response is probably multifactorial 
and may not be sufficiently captured with 1 marker (37). Seek-
ing to develop a clinical-genomic tool to predict tumor response 
with greater accuracy than existing biomarkers do, we tested and 
trained an ensemble random survival forest classifier to predict 
PFS. In addition to the genomic alterations derived from WES 
data, we added clinical variables, including patient age and per-
formance status, tumor site and stage, infection and antibiotic 
use while on ICB, and values obtained from routine clinical lab-
oratory blood testing. We first split the cohort into a training set 
(70%, n = 91) and hold-out test set (30%, n = 39; 3 patients were 
excluded because of incomplete clinical data), ensuring that the 
split was stratified to balance the distribution of key clinical and 
genomic variables in each of the sets. Twenty-three features (PFS-
RF23) were selected and then calibrated in the training set with 
bootstrap aggregation (Figure 5A). The 14 features with an average 
permutation importance above 0 were selected to train a second, 
more parsimonious model (PFS-RF14) in the same training set. 
We then compared both RF models against a genomic biomarker 
of TMB alone in the hold-out test set, with 6-month PFS, 12-month 

APOBEC signature, an absent smoking signature, high CD8-posi-
tive T cell infiltration, and an absence of 9p24.1 deletion. Tumors 
in subtypes 1 and 2, conversely, had the lowest ORRs (13% and 
7%) and the poorest PFS: they lacked viral antigens, had a poor-
ly infiltrated T cell tumor microenvironment (TME), and a strong 
smoking signature. Subtype 1 also had a low TMB, whereas subtype 
2 had higher a TMB but frequent (86%) 9p24.1 deletions. Subtypes 
3, 5, and 6 had more intermediate immunogenomic characteris-
tics. Subtype 3 was the only V-negative, smoking-associated sub-
type with a moderately high response rate to ICB (32%), potentially 
related to this subtype’s intact 9p24.1 with a higher CPS and a rel-
atively high TMB with evidence of APOBEC-associated mutagen-
esis (34, 35). Subtype 5 (ORR, 20%) shared some of these features 
but included a minority (31%) of TP53 WT, V-negative tumors, 
with a low TMB and more frequent smoking signature — perhaps 
explaining the more moderate response rate. Finally, subtype 6 
(ORR, 18%) was composed of tumors with intermediate features — 
some favorable (V-positive, 9p24.1 mostly intact), and some unfa-
vorable (heavy smoking signature, weak APOBEC signature, and 
low TMB), consistent with the observations of the adverse prog-
nostic effect of smoking in HPV-associated tumors (2).

To validate these molecular subtyping results in an indepen-
dent external data set, tumor and matched normal exome-sequenc-
ing data from 102 patients with R/M HNSCC treated with pem-
brolizumab in the KEYNOTE-012 trial were analyzed (15, 36). In the 
prespecified analysis plan, each sample was assigned to a molecular 
subtype (see Methods, Supplemental Figure 2E, and Supplemental 
Table 1) by an investigator blinded to the clinical outcome data. In 
line with the main cohort data, low-risk tumors (subtypes 3, 4, and 5; 
n = 60) in the KEYNOTE-012 validation data set had a significantly 
higher response rate than did high-risk tumors (subtypes 1, 2, and 6; 
n = 42): 25% vs. 7% (OR, 4.33 [90% CI: 1.44–13.02]; P = 0.017), with 
the highest ORR observed in subtype 4 (28%) (Figure 3F).

Previously described biomarkers have modest predictive value for 
ICB treatment response in HNSCC. Biomarkers previously described 
as having potential predictive value in HNSCC tumors treated with 
ICB were then explored: TMB (FDA-approved for the use of ICB in 
solid tumors), PD-L1 CPS, and intratumoral T cell infiltration (9, 

Table 2. Median, 6-month, 12-month, and 24-month PFS and OS estimates and 95% CIs 
for the total cohort and its subgroups based on viral status

Median, mo (95% CI) 6 mo, % (95% CI) 12 mo, % (95% CI) 24 mo, % (95% CI)
PFS
All 2.4 (2.0, 4.0) 32 (25, 41) 20 (14, 28) 11 (7, 18)
V-negative 2.1 (1.8, 4.4) 30 (20, 43) 13 (7, 24) 6 (2, 16)
All V-positive 2.5 (2.0, 5.0) 35 (25, 48) 26 (18, 39) 16 (9, 27)
HPV-positive 2.9 (1.9, 5.3) 34 (24, 49) 23 (14, 37) 13 (6, 25)
EBV-positive 2.3 (1.9, NA) 39 (19, 77) 39 (19, 77) 31 (14, 70)
OS
All 11.3 (9.9, 16.4) 73 (66, 81) 49 (41, 58) 35 (28, 45)
V-negative 9.9 (7.9, 11.6) 66 (55, 78) 36 (26, 50) 25 (16, 38)
All V-positive 16.4 (11.4, 31.1) 80 (71, 90) 61 (50, 73) 45 (35, 59)
HPV-positive 15.5 (11.4, 29.2) 82 (73, 93) 60 (48, 75) 41 (30, 57)
EBV-positive 34.0 (4.5, NA) 69 (48, 100) 62 (40, 95) 62 (40, 95)
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OS, and objective response as endpoints. In the test set, the PFS-
RF23 was able to better predict PFS, OS, and ORR (AUROC values 
of 0.66, 0.70, and 0.66, respectively), as was the PFS-RF14 model 
(0.65, 0.63, and 0.67), compared with the PFS-TMB model (0.52, 
0.39, and 0.48) (Figure 5B). C-index values (38) in the test set were 
higher for PFS-RF23 and PFS-RF14 models compared with the 
PFS-TMB model (Figure 5C). The median predicted PFS for each 
model was then used as a threshold to divide patients into pre-
dicted high-survival and low-survival groups (Supplemental Fig-
ure 3A). In the test set, the PFS-RF23 (HR, 0.48 [0.24–0.98]; P = 
0.038) and the PFS-RF14 model (HR, 0.45 [0.22–0.92]; P = 0.021) 
were significantly associated with PFS, while no significant asso-
ciation was seen with high TMB (HR, 0.89 [0.46–1.74]; P = 0.74) 
(Figure 5D). We obtained similar outcomes when analyzing OS as 
the clinical endpoint for high-survival and low-survival patients in 
these models trained on PFS (Supplemental Figure 3, B and C).

Following the same methodology and using the same 23 clini-
cal and genetic variables, we trained 2 predictive models using OS 
as endpoint (OS-RF23 and OS-RF11), which were again compared 
with a TMB-based predictor (OS-TMB) (Supplemental Figure 4A). 
Analyses identical to the PFS model and setting PFS, OS, and ORR 
as endpoints yielded a similar predictive power (Supplemental 
Figure 4, A–D, and Supplemental Figure 5, A and B).

Finally, to validate the performance of the PFS-RF14 classifi-
er in an independent cohort, we identified 30 additional patients 
with HNSCC (16 V-negative, 14 V-positive; see clinical data in 
Supplemental Table 2) treated at our center with anti–PD-1 drugs, 
who had complete clinical and genomic data available for anal-
ysis. These tumors were profiled with targeted next-generation 

sequencing (tNGS) using 3 versions of the MSK–Integrated Muta-
tion Profiling of Actionable Cancer Targets (MSK-IMPACT) panel 
(39, 40) including 341 (3 samples), 410 (11 samples), or 468 genes 
(16 samples; genes per panel are listed in the Supplemental Sup-
porting Data Values file). The PFS-RF14 model was chosen for 
validation because not all genomic features in RF23 were avail-
able from the tNGS panel; similarly, clinical smoking history was 
used instead of the smoking mutational signature. In this valida-
tion data set, we found that the PFS-RF14 model could predict 
PFS and OS (C-index, 0.63 and 0.67, respectively) better than the 
PFS model based on TMB (C-index, 0.53 and 0.58, respectively) 
(Figure 6A). The PFS-RF14 model outperformed TMB in predict-
ing 6-month PFS (AUROC, 0.74 vs. 0.48), 12-month OS (0.84 vs. 
0.71), and objective response (0.77 vs. 0.53) (Figure 6B). Finally, 
the patients in the independent cohort predicted to have a high 
PFS by the PFS-14 model (using the median as a threshold) had 
significantly longer PFS (HR, 0.31 [0.12–0.70]; P = 0.0013) and OS 
(HR, 0.41 [0.17–0.90]; P = 0.012) than did those in the low PFS 
group, while the prediction based on TMB yielded no statistically 
significant separation of PFS (HR, 0.76 [0.34–1.67]; P = 0.25) or 
OS (HR, 0.50 [0.24–1.27]; P = 0.08) (Figure 6, C and D). The low 
predictive value of TMB in the validation cohort is consistent with 
prior literature; for example, a nonsignificant association with OS 
after ICB therapy (HR, 0.76 [0.33–1.76]) was found in a prior study 
of 174 patients with HNSCC (9).

To evaluate whether these predictive models also convey 
prognostic information outside of the context of ICB treatment, 
we tested the RF14 model in a cohort of patients with HNSCC 
never treated with immunotherapy. In predicting this cohort’s 
OS, the C-index and AUROC for the RF14 model were higher than 
for TMB alone (Supplemental Figure 5, C and D). In this cohort, 
a high TMB (HR, 2.74; P = 0.028) and the RF14 model (HR, 0.4; 
P = 0.037) were significantly associated with OS (Supplemental 
Figure 5, E and F), indicating that the RF14 model also had prog-
nostic power, albeit slightly less than the power of RF14 to predict 
ICB treatment outcomes.

Having validated the performance of the PFS-RF14 model in 
the hold-out test set and the independent validation set, we sought 
to develop a more parsimonious model that might be more feasi-
ble for clinical use. A recursive partitioning analysis with PFS as a 
dependent variable selected the top 3 features from the RF model: 
systemic inflammatory response index (SIRI) (the ratio of [neutro-
phils × monocytes]/lymphocytes), TMB, and smoking mutational 
signature. These 3 features categorized patients with HNSCC into 
low-, intermediate-, and high-risk groups (Figure 6E). Intermedi-
ate- and high-risk patients had a significantly inferior PFS (HR, 2.67 
[1.66–4.27] and 9.28 [4.73–18.23], respectively) and OS (HR, 2.56 
[1.52–4.31] and 12.07 [5.88–24.75]) compared with low-risk patients 
(both P < 0.0001) (Figure 6F). The ORR was also significantly high-
er in the low-risk (53%) compared with the intermediate- (16%) 
and high-risk (6%; P = 5.3 × 10–5) groups (Figure 6G). This 3-feature 
recursive partitioning analysis (RPA) classifier was additionally test-
ed in the tNGS IMPACT validation cohort (n = 30), again using clin-
ical smoking history as a proxy for the smoking mutational signa-
ture, where it accurately predicted patients at high risk for poor OS, 
although the association with PFS was not statistically significant in 
this small cohort (Supplemental Figure 5, G and H).

Figure 2. The genomic landscape of V-negative, HPV-positive, and 
EBV-positive HNSCC. (A) Each column represents a unique sample. V-neg-
ative tumors are shown on the left and HPV-positive and EBV-positive 
tumors on the right. The top bar chart represents the TMB in mutations/
Mbp per sample; the EBV-positive sample marked with an asterisk was 
microsatellite unstable. Below that, a stacked bar chart shows the pro-
portion of the total mutational load attributed to COSMIC signatures (23) 
associated with APOBEC activity, smoking, or aging. Oncoprints show the 
top 15 most frequently mutated genes (listed on the left), the variant type 
(box color), the total proportion of samples with a mutation in that gene 
(percentage on the right), and the Q value per gene (bar chart on the right). 
Tracks below the oncoprints show mutations in the TERT promoter region; 
an individual tumor’s causative virus (in V-positive tumors only); the 
primary tumor site; the proportion of LOH at the HLA locus (51); and the 
tumors’ best objective response. Ins, insertion; Del, deletion; Sig., signa-
ture; val, value.(B) Box plots show (from left to right) the TMB, the sum of 
insertions and deletions per exome, and the total number of clonal muta-
tions per exome in V-negative, HPV-positive, and EBV-positive tumors. 
The clonal mutational load was available for 124 samples. P values were 
calculated using a Kruskal-Wallis test. (C) Box plots show the contribution 
of an SBS signature associated with smoking (SBS 4) and APOBEC activity 
(SBS 2) in V-negative, HPV-positive, and EBV-positive tumors (n = 133). P 
values were calculated using a Kruskal-Wallis test. (D) Stacked bar chart 
shows the proportion of diploidy (blue, mean copy number [CN] of 1.5–2.5) 
and hyperploidy (yellow, mean CN >2.5) in V-negative, HPV-positive, and 
EBV-positive tumors (n = 133). The P value was calculated using a Fisher’s 
exact test with Freeman-Halton extension. (E) Box plots show the sample 
tumor purity estimates derived from FACETS in V-negative, HPV-positive, 
and EBV-positive tumors (n = 133). The P value was calculated using a 
Kruskal-Wallis test.
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tified a strong enrichment of TERT promoter mutations in oral 
cavity tumors. We found that TMB alone was a fairly weak bio-
marker of ICB response in HNSCC — illustrating that considerable 
mutational antigenicity alone is not always sufficient to develop a 
response. It may be that not only the total TMB, but also the ori-
gin of mutations, plays a role in ICB response in HNSCC. This is 
supported by the association of a smoking mutational signature — 
frequently seen in V-negative tumors — with nonresponses in this 
cohort, which could be related to our previously observed associa-
tion between a smoking signature and a more immunosuppressive 
microenvironment in HNSCC (31). Furthermore, the high prev-
alence of a mutational signature associated with APOBEC enzy-
matic activity in V-positive tumors (70%) — positively associated 
with immune infiltration and neoantigen load in HNSCC (32) — 
may have contributed to the higher ORR in V-positive tumors.

The multitude of factors involved in antitumor immunity (37) 
makes it unlikely that 1 single biomarker will suffice to predict 
ICB outcomes, a notion that we underline by demonstrating the 
relatively modest individual performance of TMB, PD-L1 CPS, 
and CD8-positive T cell infiltration as biomarkers. Our clustering 
analysis highlights the fact that HNSCC may be classified into 6 
different molecular subtypes with distinct outcomes, based chief-
ly on TP53 mutation status (highly correlated to tumor viral sta-
tus), TMB, 9p24.1 deletion, and sample tumor purity. Notably, 
the prognostic association of the molecular risk classification was 
validated in an independent, external cohort of 102 patients with 
R/M HNSCC. Furthermore, the distinct immunogenomic profiles 
of higher- and lower-risk tumors — the latter of which are more 
often characterized by high CD8-positive T cell infiltration, a CPS 
of 1 or higher, a high TMB, an APOBEC signature, viral positivity, a 
weaker smoking signature, and a genetically intact PD-L1 pathway 
— seemingly confirm the collective importance of these factors to 
ICB response in HNSCC.

To develop a predictive model, we trained a random surviv-
al forest model integrating clinical and genetic data. In the hold-
out test data set, we found this model able to predict treatment 
response and survival in patients with HNSCC with greater accu-
racy than TMB alone. The robustness of this model was indicated 
by a similar performance in an independent data set for which only 
tNGS data were available. We attempted to make this model more 
intuitive and broadly accessible by showing that patients might be 
accurately stratified into high and low PFS groups by using just 2 
WES-derived features (smoking signature and TMB) — both of 
which could potentially be derived from relatively low-cost tNGS 
panels — and 1 clinical laboratory variable (SIRI). Although this 
model showed accurate performance in our validation data set, 
we caution that a more precise quantification of the accuracy of 
this model will require application in a broader number of R/M 
HNSCC cohorts drawn from diverse clinical settings.

Biomarkers can convey both prognostic and predictive infor-
mation at the same time (e.g., HPV status) — they are not mutually 
exclusive terms (42). Our models have predictive value, as indi-
cated by the association with the probability of a tumor response. 
Interestingly, these models also have some prognostic value, as 
they are associated with OS in non-ICB-treated HNSCC patients. 
In the non-ICB-treated cohort, high TMB had a strong negative 
prognostic effect, directionally opposite to its positive predictive 

These models demonstrate that the combination of clinical 
and genomic data can generate a model that predicts PFS, OS, 
and response in patients with HNSCC treated with ICB, and 
with greater accuracy than using TMB alone. A simpler, 3-feature 
model incorporating only SIRI, TMB, and smoking signature was 
able to classify patients into low-, intermediate-, and high-risk 
groups with good discrimination of PFS and OS, although further 
validation is required.

Discussion
Here, we report our analyses of 133 patients with R/M HNSCC 
treated with anti–PD-1/anti–PD-L1 ICB, including data on high-
depth WES, clinical features, and routine laboratory tests. To our 
knowledge, this is the largest and most comprehensive data set 
reported to date. We defined molecular subtypes of HNSCC rele-
vant to ICB response and constructed and validated a model that 
effectively predicted survival and response with greater accuracy 
than the existing FDA-approved biomarker of TMB.

We report a 24% ORR and found that patients with virus-asso-
ciated tumors (V-positive) had a numerically superior ORR (29% 
vs. 19%; P = 0.22) and PFS (HR, 0.72 [95% CI: 0.50–1.03]; P = 
0.065) and significantly longer OS (HR, 0.55 [95% CI: 0.37–0.80]; 
P = 0.0015) compared with V-negative patients. These results 
agree with previous observations from a pooled analysis of 3 clini-
cal trials (41), but the association between virus positivity and ICB 
response in HNSCC remains incompletely clarified.

This study confirms the distinct genomic profiles of V-nega-
tive and V-positive HNSCCs (21) and demonstrates a high prev-
alence of a smoking signature (76%), TP53 mutations (67%), and 
a hyperploid copy number (59%) in V-negative tumors. We iden-

Figure 3. Molecular subtyping of HNSCC using WES data and its rele-
vance to clinical outcomes after ICB treatment. (A) Hierarchical clustering 
of 133 R/M HNSCC samples based on 13 genomic features that significant-
ly associated with PFS in a univariable Cox model (listed right) and viral 
status. The dendrogram was cut at constant height, yielding 6 subtypes. 
Bottom tracks show the ICB response (printed as a percentage) and the 
tumor site. (B) ORR per molecular subtype and for grouped subtypes con-
sidered high risk (subtypes 1, 2, and 6) and low risk (subtypes 3, 4, and 5). 
Total n = 133. The P value was calculated using Fisher’s exact test. (C) PFS 
estimate for each molecular subtype. HRs and 95% CIs were calculated 
using Cox regression, with subtype 4 as a reference. The P value calculated 
using a log-rank test. (D) PFS estimate for tumors belonging to subtypes 
considered high risk (1, 2, and 6) and low risk (3, 4, and 5). HRs and 95% CIs 
were calculated using Cox regression, with low-risk tumors as a reference. 
The P value was calculated using a log-rank test. (E) Immunogenomic 
profiles of high-risk (yellow) and low-risk (blue) samples as well as each 
subtype individually, based on 7 parameters: high CD8-positive T cell 
infiltration, CPS of 1 or higher, high TMB, viral positivity, absence of 9p24.1 
deletion (locus of CD274 [PD-L1], PDCD1LG2 [PD-L2], and JAK2), absence 
of a smoking signature, and the presence of an APOBEC signature. Radars 
extend from 0%–100%; the percentage of tumors positive per parameter 
is shown. For CD8-positive T cells, the cohort median was used as a cutoff. 
Thresholds for TMB (3.34 muts/Mbp), APOBEC signature, and smoking 
signature were chosen to obtain the best performance for predicting PFS 
in a univariable model. Genomic variables were available for 133 samples 
and IHC features for 62 samples. amp/wt, amplified or wild-type (diploid) 
copy number. (F) External validation of the subtypes relevance to the ICB 
response using KEYNOTE-012 data on patients with HNSCC (n = 102). Bars 
represent the ORR. The P value was calculated using Fisher’s exact test.
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will be the application of these markers in a prospective clinical 
cohort, which is the intended next step of this research. To this 
end, we propose to test the RF23 or RF14 model when all relevant 
data are present, and to use the 3-feature RPA classifier if the avail-
able data are more limited. In addition, the limited availability of 
tumor material precluded immunohistochemical characterization 
of the TME in approximately half of this cohort. It may be that fur-
ther integration of tumor genomic data with microenvironmental 
and transcriptomic data will yield more accurate predictive mod-

value in patients who were treated with ICB, which is in line with 
our previous findings in a pan-cancer cohort (43).

This study is inherently limited by its retrospective design. 
The molecular subtyping analysis was validated in an external, 
independent data set. In addition, the integrated clinical-genomic  
predictive model and the simplified 3-feature classifier (SIRI, 
TMB, smoking signature) were validated in a hold-out test set and 
an additional independent validation data set. Still, we believe 
that an even better test of clinical utility and generalizability 

Figure 4. Association of previously described predictors of ICB treatment response in HNSCC. P values were calculated by comparing patients with a 
complete or partial response with patients who had stable or progressive disease using a Wilcoxon rank-sum test. Note that some y axes have been log10- 
or log1p-transformed for visualization purposes. (A) TMB, clonal mutational (mut.) load per exome, and indel load per exome in 64 V-negative samples, 
per objective response category. The clonal mutational load was available for 59 samples. (B) TMB, clonal mutational load per exome, and indel load per 
exome in 69 V-positive samples, per objective response category. The clonal mutational load was available for 65 samples. (C) CPS, intratumoral CD3-pos-
itive T cell count, and intratumoral CD8-positive T cell count in 36 V-negative samples, per objective response category. The CD3-positive T cell count was 
available in 35 samples. (D) CPS, intratumoral CD3-positive T cell count, and intratumoral CD8-positive T cell count in 26 V-positive samples, per objective 
response category. (E) ROC analysis illustrating the performance of the TMB, CPS, CD3-positive infiltration, and CD8-positive infiltration in predicting 
objective responses, 6-month PFS, and 12-month OS in the patients (V-negative and V-positive) for whom these data were available (n = 62). The AUROC 
curve (AUC) is printed in each plot.
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and excluding these patients would bias our cohort by enriching 
for more indolent tumors.

In conclusion, we report on a large cohort of patients with R/M 
HNSCC treated with ICB. WES data revealed 6 molecular HNSCC 
subtypes with distinct prognostic profiles, a finding reproduced in 
a large external cohort. Finally, we used combined clinical and 

els. Finally, we cannot rule out a potential effect of radiotherapy 
administered while the patient is on ICB treatment (n = 40, 30%). 
However, we opted to include these patients because (a) we could 
adjudicate the ORR independently (see Methods), and (b) we 
aimed for our cohort to reflect real-world practice, in which pal-
liative radiotherapy is often used for local symptomatic control, 

Figure 5. Training and testing of an integrated, clinical-genomic model in HNSCC using PFS as the outcome. (A) Feature contribution of 23 clinical and 
genomic variables to a RF classifier predicting PFS. Variables are ordered from highest to lowest feature contribution. Colored bars on the left indicate 
the variables included in the PFS-RF23 model (all), the PFS-RF14 model (top 14 variables only), and the PFS-TMB model (TMB only). Autoimmun. dis., 
autoimmune disease; nonsyn, nonsynonomous mutation. (B) ROC analysis illustrating the performance of the 3 models (PFS-RF23, PFS-RF14, and PFS-
TMB) in predicting 6-month PFS, 12-month OS, and objective response in the 70% training set (top row of plots, n = 91) and 30% hold-out test set (bottom 
row, n = 39). Three patients were excluded due to incomplete clinical data. (C) Bar charts showing the C-index (38) for the PFS-RF23, PFS-RF14, and 
PFS-TMB model’s performance in predicting PFS and OS, calculated in the test set (n = 39). (D) Kaplan-Meier PFS analysis in the test set for the PFS-RF23, 
PFS-RF14, and PFS-TMB models. The median predicted PFS for each model was used as a threshold to divide patients into predicted high-survival (blue) 
and low-survival (yellow) groups. HRs and 95% CIs were calculated using Cox regression, with predicted low-survival tumors as a reference. P values were 
calculated using a log-rank test.
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tion data set (15, 36). All 107 samples from KEYNOTE-012 HNSCC B1 
and B2 cohorts were analyzed, but only samples that passed quality con-
trol metrics and had complete data for our study were used (n = 102).

We assembled a cohort of 65 patients with HNSCC who were diag-
nosed and/or treated at our center and had MSK-IMPACT data avail-
able, but never received immunotherapy. The percentage of V-positive 
tumors was similar to the percentage in the main cohort (42% vs. 52%).

Outcomes. Clinical records were reviewed for the primary study 
outcomes: ICB response, PFS, and OS. The first line of ICB was 
used to annotate patients who received multiple lines of ICB. Objec-
tive response was assessed using RECIST, version 1.1(17). If formal 
RECIST reads were unavailable (n = 72, 54%), physicians’ notes and 
imaging studies were reviewed using the same criteria. For consisten-
cy, all patients were reviewed by the same investigator (and audited 
by a senior author). An objective response was defined as a com-
plete or partial response. Clinical benefit was defined as an objective 
response or stable disease lasting at least 6 months. PFS was defined 
as the time from the first ICB infusion to disease progression or death 
of any cause; patients without progression were censored at their last 
appointment. OS was defined as the time from the first ICB infusion 
to death of any cause; patients alive at the time of the review were cen-
sored at their last contact. For the cohort of patients never treated with 
immunotherapy, the outcome of interest was OS calculated from the 
start date of the first treatment or, if only supportive treatment was 
administered, the date of diagnosis.

Patients treated with radiotherapy while on ICB (n = 40, 30%) 
were only classified as responders if there was a response in nonirra-
diated lesion(s) (n = 8) or if the response occurred before radiotherapy 
was commenced (n = 4). Of the 19 patients (14%) who received anoth-
er systemic treatment while on ICB (detailed in Supplemental Table 
3), 10 were treated with cytotoxic chemotherapy. Four patients (all 
nonresponders) received chemotherapy concurrently with the start 
of ICB. Six patients received chemotherapy initiated after the start 
of ICB treatment: 5 patients without a response and 1 patient with a 
partial response that occurred during ICB therapy alone, before the 
start of chemotherapy.

HPV and EBV detection. HPV status was determined through chart 
review and integration of available assays: p16 IHC, PCR, and DNA or 
RNA ISH. If only 1 test was performed, and it was positive, the tumor 
was categorized as HPV-positive. If more than 1 test was performed, 
a tumor was categorized HP-positive only if all the tests performed 
were positive, with 1 exception: a tumor was categorized as HPV-pos-
itive if DNA ISH was negative, provided either p16 IHC or RNA ISH 
was positive. EBV status was determined using Epstein-Barr virus–
encoded RNAs (EBER) ISH.

IHC. Tissue was available for analyses of the TME using IHC in 62 
cases (47%). In the remaining cases, additional tissue was unavailable, 
generally because of sample exhaustion. The tissue sample selected 
for IHC was the closest prior to the start of ICB, and in 1 patient (<1%) 
a post-ICB sample was used. The primary antibodies used were as fol-
lows: CD3 (clone LN10, dilution 1:100, Leica Biosystems), CD8 (clone 
4B11, ready-to-use, Leica Biosystems), and PD-L1 (clone E1L3N, dilu-
tion 1:400, Cell Signaling Technology). The E1L3N clone, validated 
at our center, generates CPS results highly comparable to those of 
the 22C3 clone in HNSCC (44, 45). The PD-L1 CPS was evaluated on 
whole slides by a head and neck pathologist and defined as follows: 
(number of PD-L1–positive tumor and immune cells)/(total number 

genomic data to train a model that — upon further validation in 
external data sets — may be used to guide researchers and clini-
cians looking for a more effective and personalized way to use ICB 
agents for the treatment of HNSCC.

Methods
Cohort characteristics. The main cohort patients had R/M HNSCC 
and received at least 1 dose of anti–PD-(L)1 and/or anti–CTLA-4 ICB 
at MSKCC after 2015, when the collection of tumor tissues and blood 
for DNA extraction and genomic profiling was part of routine clin-
ical care. All patients provided written informed consent for tumor 
genomic sequencing. Patients treated with ICB as neoadjuvant or 
adjuvant treatment and patients with cutaneous squamous cell carci-
noma (SCC), salivary gland cancers, or thyroid tumors were excluded. 
In total, 133 patients with R/M HNSCC patients — treated at MSKCC 
and with biospecimens available for WES — were identified.

An additional cohort with the same inclusion criteria, but for 
whom WES was not performed, had genomic data available from 
tNGS as part of clinical care using the MSK-IMPACT platform (n = 30, 
Supplemental Table 2). These patients also provided written informed 
consent for tumor sequencing. This data set was used for validation.

The tumor sample obtained on the date closed to the start of ICB 
was selected for tNGS or WES in both cohorts. For 18 WES (13.5%) and 
11 MSK-IMPACT patients (36.7%), only samples obtained after the 
start of ICB were available.

Data from a cohort of patients with HNSCC treated with immuno-
therapy, who had WES performed, and for whom response data were 
available from the KEYNOTE-012 study served as an external valida-

Figure 6. Validation of the clinical-genomic model associated with PFS 
upon ICB treatment in an independent cohort of 30 patients and model 
simplification using RPA. Patient characteristics for the independent 
cohort are provided in Supplemental Table 2, and model simplification 
using RPA is shown in Supplemental Figure 5. (A) C-index illustrating the 
performance of the PFS-RF14 model applied in the independent validation 
cohort (n = 30), compared with the model based on TMB (PFS-TMB). (B) 
ROC analysis illustrating the performance of the PFS-RF14 and TMB model 
in predicting 6-month PFS, 12-month OS, and objective response in the 
validation cohort (n = 30). (C) PFS in the validation cohort for the PFS-RF14 
and PFS-TMB models. The median predicted PFS for each model was used 
to divide patients into predicted high-survival (blue) and low-survival 
(yellow) groups. HRs and 95% CIs were calculated using Cox regression, 
with predicted low-survival tumors as a reference. P values were calculated 
using a log-rank test. (D) OS in the validation cohort for the PFS-RF14 
and PFS-TMB models. The median predicted PFS for each model was 
used as a threshold to divide patients into predicted high-survival and 
low-survival groups. HRs and 95% CIs were calculated using Cox regres-
sion, with predicted low-survival tumors (yellow) as a reference. (E) RPA 
classifier created in the main cohort (n = 131) using PFS as a dependent 
variable. Variables selected for the model were the top 3 features from 
the PFS-RF23 model: SIRI, TMB, and smoking signature. Patients were 
classified into high-risk, intermediate-risk, and low-risk groups. (F) PFS 
(left) and OS (right) of the high- (red), intermediate- (orange), and low-risk 
(blue) groups obtained using the RPA classifier in the main cohort (n = 
131). HRs and 95% CIs were calculated using Cox regression, with low-risk 
tumors as a reference. P values were calculated using a log-rank test. (G) 
ORR in the high- (red), intermediate- (orange), and low-risk (blue) groups 
obtained using the RPA classifier in the main cohort (n = 131). The P value 
was calculated using a Fisher’s exact test with Freeman-Halton extension. 
Intermed., intermediate.
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Mutational signature analysis. Mutational signature analysis was 
done using maftools (52) following the authors’ recommendations. 
Briefly, trinucleotide frequencies were extracted, after which muta-
tional signatures were obtained using non-negative matrix factoriza-
tion. The top 4 signatures were chosen by inspecting the cophenetic 
metric and cosine similarity index with COSMIC SBS (23) signatures 
used for annotation.

Molecular subtype classification. We first evaluated whether each 
genomic feature with potential predictive value based on a literature 
review could predict PFS in the V-positive group, the V-negative group, 
or the whole cohort, by dichotomizing the continuous values into low 
and high. The threshold for each feature was chosen to attain the best 
performance in predicting PFS in a univariable survival model. Fea-
tures with a P value of greater than 0.1 were not considered potentially 
predictive and were excluded. Next, we performed unsupervised hier-
archical clustering of the 13 features that remained and of viral status. 
The hierarchical tree was cut at a constant height to obtain 6 distinct 
clusters. Subtypes were categorized into high-risk (subtypes 1, 2, and 
6) and low-risk (subtypes 3, 4, and 5) groups on the basis of the differ-
ences in the ORR and PFS.

To facilitate the validation of the clinical utility of our molecular 
subtyping in an independent cohort (15, 36), we defined a rule-based 
classifier by characterizing the most (or least) enriched feature per 
cluster. We used recursive partitioning and regression trees to train a 
rule-based classifier using the same molecular features derived from 
WES minus viral status. Among the features, only TP53 mutation sta-
tus, TMB, 9p24.1 deletion, and tumor purity were informative. The fol-
lowing logic was used to classify all samples into molecular subtypes 
1–6. (a) TP53 status (mutated or WT) was used to assign the sample 
to subtype 1, 2, or 3 versus subtype 4, 5, or 6 (first hierarchy). (b) In 
the second hierarchy, we could best distinguish subtypes 1, 2, and 3 
by 9p24.1 deletion (dominant feature of subtype 2) and TMB status 
(based on enrichment of TMB-low in subtype 1 vs. subtypes 2 and 3). 
(c) High tumor purity was the principal characteristic of subtype 6 
compared with subtypes 4 and 5, whereas a high TMB could distin-
guish subtype 4 from subtypes 5 and 6.

Using only 4 features, the resulting classifier accurately recon-
structed the subtypes assigned using hierarchical clustering with 
approximately 86% concordance in the high-risk (subtypes 1, 2, and 
6) versus low-risk (subtypes 3, 4, and 5) classifications (Supplemental 
Figure 2F and Supplemental Table 1).

WES analysis of the KEYNOTE-012 external validation cohort. Raw 
paired tumor and normal WES data from the KEYNOTE-012 HNSCC 
study (15) were downloaded and processed at MSKCC using an inde-
pendent pipeline that was previously described in detail (53). In brief, 
the sequences were aligned to the b37 reference genome (GATK 
bundle, version 2.3) using BWA-MEM (version 0.7.15-rl1140) (54). 
Aligned BAM files were further marked for duplicates and underwent 
indel realignment using GATK (version 3.7). Alignment details can be 
found at: https://github.com/jrflab/modules/blob/master/aligners/
bwamemAligner.mk.

Somatic SNVs were called using MuTect (version 1.1.7) (55). Indels 
were called with Strelka (version 1.0.15) (56), VarScan2 (version 2.3.7) 
(57), Platypus (version 0.8.1) (58), and Scalpel (version 0.5) (59). Indels 
called by 2 or more callers were included. Details on this pipeline can 
be found at: https://github.com/jrflab/modules/tree/master/variant_
callers/somatic. Somatic copy number alterations and LOH data were 

of tumor cells) × 100. The whole slides stained for CD3 and CD8 were 
scanned using Mirax (3DHISTECH). After scanning, each whole slide 
was reviewed, and 3 circular intratumoral areas (ROIs) measuring 
1 mm in diameter were selected using ImageJ (NIH) (also used for 
quantification). Thresholding was performed on brown (positive cells 
marked with DAB) and blue (hematoxylin-labeled nuclei) areas. Auto-
matic enumeration of the total number of CD3-positive or CD8-posi-
tive cells in each ROI was obtained using specific scripts for each stain 
(see Supplemental Figure 2, C and D). The arithmetic mean of the cell 
counts in the 3 ROIs per sample was used for further analysis.

WES. Pre-enrichment libraries were created using the Illumina 
TruSight Oncology DNA Library Prep Kit or the KAPA HyperPrep Kit 
(Roche) with 40 ng or 200 ng input DNA per sample, respectively. 
KAPA libraries were purified and quantified with a Qubit dsDNA High 
Sensitivity assay (Thermo Fisher Scientific), and 500 ng was used 
for enrichment. TruSight Oncology index PCR products were direct-
ly used for enrichment following the TruSight Oncology Reference 
Guide. Target enrichment was performed using the Illumina TruSight 
Oncology Enrichment Kit with Integrated DNA Technologies (IDT) 
xGen Universal Blockers and the IDT xGen Exome Research Panel. 
A single hybridization was done overnight at 62°C. Post-enrichment 
libraries were normalized using bead-based normalization and then 
pooled. Samples were sequenced with 151 bp paired-end reads on the 
Illumina NovaSeq 6000 S4 flow cell using the XP workflow for indi-
vidual lane loading with 12 libraries per lane. On average, each sample 
yielded 612 million reads and a median target coverage depth of 776×. 
Samples with a depth of coverage of less than 150× were excluded 
from this study.

Variant calling and TMB. WES reads were aligned using the Bur-
rows-Wheeler Aligner (BWA-MEM) with the Sequence Alignment/
Map (SAMtools) utility to align DNA sequences in FASTQ files to 
the hg19 genome. We used Strelka-2.9 (46) to perform small vari-
ant calling on paired tumor-normal BAM files for each sample after 
removing duplicate reads. Low-confidence single nucleotide variants 
(SNVs) were removed using the following criteria: tumor VAF≥0.05, 
DP.tumor≥50, DP.normal≥20, AD.tumor≥5, and VAFnormal/VAFtu-
mor<0.2. Only variants called on both strands were called as high-con-
fidence ones. The TMB was calculated as the total number of somatic 
mutations normalized to the exonic coverage in megabases. SciClone 
(version 1.1) (47) was implemented to calculate the cancer cell fraction 
(CCF). The clonal mutational load was calculated by counting muta-
tions with a CCF of greater than 0.5 (48). Sequenza (version 2.1) (49) 
was used to estimate tumor purity and ploidy.

Copy number alteration and HLA LOH. Copy numbers were esti-
mated using CNV Robust Analysis For Tumors (CRAFT) (50). CRAFT 
determined the read coverage of each amplicon or “bin” for the sam-
ple using a set of baseline samples as input. Then, a sample’s bin count 
was modeled as a linear combination of baselines, and the model 
prediction was used as a baseline-corrected value. Next, the effects 
of GC bias were removed using GC quantile normalization. Gene 
amplification or deletion events were determined using empirically 
determined cutoff values. We first defined the probability of deletion 
or amplification at the arm level as the total number of deleted or 
amplified genes divided by the total number of genes. Then, we con-
sidered an arm to be deleted or amplified if the probability of deletion 
or amplification exceeded 20%. Allele-specific HLA LOH data were 
obtained using FACETS (51).
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thermore, Kaplan-Meier survival analyses were performed in the test 
set, in which patients predicted to have low survival were compared 
with those with a predicted high survival.

We used the independent MSK-IMPACT tNGS cohort (n = 30) to val-
idate the RF14 model. The MSK-IMPACT panel covers limited regions of 
the genome, precluding accurate identification of mutational signatures. 
Furthermore, the INDEL load was not reported. Therefore, values for 
the APOBEC signature and INDEL load were estimated using imputa-
tion as provided in the randomForestSRC package. A clinical smoking 
history was used as a proxy for the smoking mutational signature.

RPA. A simpler model was obtained after the RF using RPA with PFS 
as a dependent variable in the main data set (n = 131; n = 2 patients exclud-
ed because of incomplete data). The variables selected for the model 
were the top 3 features from the RF: neutrophils × monocytes/lympho-
cytes (known as the SIRI), TMB, and the smoking mutational signature. 
The model also included viral status to control for a possible bias. The 
RPA retained all the top 3 features from the RF model but did not retain 
viral status. Four final nodes were obtained, but 2 had a similar HRs and 
were merged. As such, 3 final groups (low-, intermediate-, and high-risk) 
were established. Validation was performed using the MSK-IMPACT 
tNGS cohort. As described above, a clinical smoking history was used for 
these patients instead of the smoking mutational signature.

Statistics. Box plots were used to show the distributions of contin-
uous variables. The horizontal line represents the median and boxes 
the IQR. Whiskers extend from Q1 and Q3 to the minimal and max-
imal values, but no further than 1.5 × IQR. Survival curves (PFS and 
OS) were estimated using Kaplan-Meier methodology. P values of less 
than 0.05 indicate statistical significance. P values for Kaplan-Meier 
analyses were derived using the log-rank test. HRs and 95% CIs were 
calculated using a univariable or multivariable Cox proportional haz-
ards model. The heatmap dendrogram was obtained using the heat-
map.2 function from the gplots library in R at default settings. Radar 
plots were based on 7 parameters suggested as positively associated 
with the ICB response: high CD8-positive T cell infiltration, a CPS of 
1 or higher, high TMB, virus positivity, absence of a 9p24.1 deletion, 
the absence of a smoking mutational signature, and the presence of an 
APOBEC signature. All points on the radars extend from 0% to 100%, 
and the fraction of tumors positive for each parameter is shown. For 
CD8-positive T cell infiltration, the cohort median was used as a cutoff 
to define a “high” count. The thresholds for TMB (3.34 muts/Mbp), 
APOBEC signature, and smoking signature were chosen to obtain the 
best performance for predicting PFS in a univariable survival model. 
Where appropriate, median values were compared across groups, and 
P values were calculated using a Wilcoxon rank-sum test (in the case 
of 2 groups) or a Kruskal-Wallis test (in the case of >2 groups). Pro-
portions were compared across groups using a Fisher’s exact test, and 
the Freeman-Halton extension was applied when more than 2 groups 
were compared. All reported P values are 2 sided, except when a direc-
tional hypothesis was tested in the validation sets (i.e., KEYNOTE-012 
or IMPACT), for which a 1-sided P value is reported. As our focus was 
not to identify new features of the well-described genomic landscape 
of HNSCC, we only performed limited hypothesis testing among a 
limited number of mutations (TERT promoter) (62, 63), copy number 
variants (aneuploidy) (64), 9p (65, 66), HLA LOH (27), and mutational 
signatures (smoking, APOBEC) (67–69), all of which were previously 
suggested to be of interest. Hence, we did not perform broad multiple 
hypothesis testing across the genome and report nominal P values for 

obtained using FACETS (version 0.5.6) (51). Arm-level copy numbers 
were calculated by taking the average segment copy number on the 
arm, weighed by the segment length. Gene-level copy number chang-
es were determined by whether the total copy number of the gene was 
greater (gain) or lower (loss) than the average ploidy of the tumor as 
calculated by FACETS. Homdels were determined when the gene’s 
median log-ratio (LR) was less than the median segment LR value 
subtracted by 2.5 times the SD of the segment LR.

Comparison of the KEYNOTE-012 external validation cohort and the 
main cohort. Of the 107 samples in the Keynote-012 HNSCC cohort, 
106 tumor-normal pairs passed WES quality control with confirmed 
tumor-normal matching. In 3 samples, purity could not be determined 
by FACETS, precluding molecular subtype classification. In 1 sample 
that was hypermutated because of a mutation in POLE, predicting a 
very high probability of the ICB response (60), the molecular subtype 
could not accurately be assigned in the absence of similarly hypermu-
tated tumors in the main cohort. The final KEYNOTE-012 validation 
cohort thus consisted of 102 patients.

Quantile normalization mapped TMB of fewer than 3.34 muts/
Mbp in the MSKCC cohort to TMB of fewer than 90 muts/exome in 
the KEYNOTE-012 cohort. With blinding to the clinical data, the KEY-
NOTE-012 patients were classified into molecular subtypes 1–6 using 
the 4-feature classifier described above. In consideration of the small 
number of patients in the subgroups and multiple hypothesis testing, the 
preplanned analysis in this validation data set allowed for statistical com-
parison of clinical outcomes only between low-risk and high-risk tumors.

Random forest classifier. Three patients from the main cohort (n = 
133) had missing clinical data and were excluded. The 130 patients were 
split into a training set (70%) and a test set (30%). The imbalance score 
between the training and test sets was measured as the sum of the dif-
ference in medians (continuous variables) or the sum of the difference 
in frequency (categorical variables) for the most prevalent genomic 
alterations. This process was repeated 1,000 times, after which the split 
with the lowest imbalance score was selected, ensuring that the training 
and test sets were similarly sampled from the same distribution.

Then, in the training set (n = 91), we performed univariable analy-
ses with PFS as the outcome using the V-positive group, the V-negative 
group, and both groups combined, after which we selected features 
that had a P value of less than 0.2 (Supplemental Table 4). Observed 
mutations, copy number alterations, and clinical features considered 
clinically relevant or with a previously shown association with out-
comes were added.

After removing features with missing values, 23 features were 
considered for use to train a random forest (RF) classifier. We used a 
survival RF classifier model implemented in the R randomForestSRC 
package (61) with ntree=100 and block.size=1 to train a classifier on 
PFS or OS on training set patients (RF23). Training was performed 
1,000 times, and the average statistics were reported. Permutation 
variable importance was measured and used to choose the most pre-
dictive features. Briefly, 14 features from the model trained on PFS 
(11 features in the model trained on OS) with average positive per-
mutation importance were kept to retrain a more parsimonious mod-
el named RF14 (and RF11 for the OS model). Test set patients with 
a predicted survival above or below the median were defined as the 
high-survival or low-survival group, respectively. Model performance 
was assessed in the training and test sets using the C-index (38) and 
time-dependent ROC plots for 6-month PFS and 12-month OS. Fur-
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name was rotated across academic presentations and the pub-
lished manuscript, and, accordingly, CV, MG, and JLV agree and 
assert that any permutation of the order of these names is correct 
and acceptable. AP, CF, CYH, DC, ESK, ML, NR, RS, and XP per-
formed specialized clinical or genomic analyses. ALH, CLZ, DBS, 
DC, LAB, NR, and TAC contributed oncologic, genomic, and/or 
statistical review and expertise. 
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