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Clostridioides difficile infection (CDI) accounts for a substantial proportion of deaths attributable to antibiotic-resistant
bacteria in the United States. Although C. difficile can be an asymptomatic colonizer, its pathogenic potential is most
commonly manifested in patients with antibiotic-modified intestinal microbiomes. In a cohort of 186 hospitalized patients,
we showed that host and microbe-associated shifts in fecal metabolomes had the potential to distinguish patients with
CDI from those with non–C. difficile diarrhea and C. difficile colonization. Patients with CDI exhibited a chemical signature
of Stickland amino acid fermentation that was distinct from those of uncolonized controls. This signature suggested that
C. difficile preferentially catabolizes branched chain amino acids during CDI. Unexpectedly, we also identified a series of
noncanonical, unsaturated bile acids that were depleted in patients with CDI. These bile acids may derive from an
extended host-microbiome dehydroxylation network in uninfected patients. Bile acid composition and leucine fermentation
defined a prototype metabolomic model with potential to distinguish clinical CDI from asymptomatic C. difficile
colonization.
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Introduction
Each year in the United States, over 450,000 cases of Clostridioides 
difficile infection (CDI) are associated with over 29,000 associated 
deaths, with attributable costs of over $2 billion (1). CDI is the most 
common healthcare-associated infection in US hospitals, and most 
cases start outside of the hospital setting (2). Although antimicrobi-
al exposures are clearly a critical CDI risk factor, the mechanisms 
contributing to this association are incompletely understood.

CDIs arise following ingestion of C. difficile spores, which 
germinate in the intestinal tract and give rise to metabolically 
active, Gram-positive rods that colonize the colon. These vege-
tative forms secrete toxins whose effects upon the colonic epi-
thelium give rise to a spectrum of intestinal symptoms ranging 
from diarrhea to a life-threatening pseudomembranous colitis. 
C. difficile persist with assistance from extensive antibiotic 
resistance that enables proliferation in patients whose intesti-
nal microbiomes have been altered by broad-spectrum antibi-
otic exposure. Individual differences in CDI susceptibility and 
severity are also substantial, such that some patients harboring 

C. difficile do not benefit from C. difficile–directed antibiot-
ic therapies (3, 4). The mechanistic bases for these individual 
differences are poorly understood. Adaptations to different 
chemical environments in the intestine may markedly affect 
the pathogenic potential of C. difficile (5).

C. difficile is regarded as an opportunistic colonizer that is 
susceptible to suppression by healthy intestinal microbiomes. A 
number of candidate metabolic functions may contribute to this 
suppressive activity (3). One such function is the ability of healthy 
microbiomes to convert primary bile acids (e.g., cholic and che-
nodeoxycholic acids), which have been shown to promote spore 
germination in vitro, to secondary bile acids (e.g., deoxycholic 
and lithocholic acids, respectively). Both gnotobiotic or antibiotic-
exposed mice exhibit diminished secondary bile acid production, 
though it is unclear which bile acid changes have causative, in 
addition to correlative, relationships with CDI susceptibility in 
humans (6–9). Recent work in an ex vivo murine model shows that 
secondary bile acids inhibit C. difficile germination and growth, 
although these effects are partially strain-specific (8, 9). Multiple 
bile acid transformation pathways are plausible in humans, who 
possess distinctive bile acids and microbiome compositions that 
may contribute to CDI risk in species-specific ways.

Current approaches to CDI diagnosis require compatible lab-
oratory findings in the context of attributable clinical symptoms 
(e.g., diarrhea, abdominal pain, megacolon) (3). Two laboratory 
diagnostic approaches currently predominate in US hospitals, 
one based on nucleic acid amplification-based identification of 
toxigenic C. difficile and the other based on enzyme immunoas-
say detection of C. difficile exotoxins. The relative merits of these 
approaches have been debated (10). Direct detection of C. diffi-
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without a positive toxin enzyme immunoassay (EIA) result, 
alongside matched, uncolonized controls. To characterize fecal 
metabolomes, we used untargeted gas chromatography–mass 
spectrometry (GC-MS), which permits robust chemical identifi-
cation of metabolites and dietary compounds. Using multivari-
ate analyses, we resolved multiple CDI-associated metabolites 
with microbial, host, and dietary origins. A distinctive short 
chain fatty acid (SCFA) series implicates extensive anaerobic 
amino acid metabolism by C. difficile in some colonized subjects. 
A novel, noncanonical bile acid correlation network not previ-
ously described in CDI susceptibility was also resolved. These 
and other results are consistent with numerous host-pathogen 
interactions that shape the relationship between patients and  
C. difficile. This allowed us to assemble a metabolomic definition 
of CDI from biochemical indices based on C. difficile–associated 
amino acid fermentation and host bile acid metabolism. These 
results may direct new CDI therapeutic and diagnostic efforts 
toward clinically relevant targets.

Results
Clinical cohort. Diarrheal specimens meeting inclusion and exclu-
sion criteria were cultured for C. difficile. All C. difficile isolates 
recovered in culture were characterized for the presence of toxins 
tcdA, tcdB, cdtA, and cdtB by multiplex PCR, and underwent PCR 
ribotyping as previously described (11–14). Of the 8931 available 
stool specimens (Supplemental Figure 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/
JCI126905DS1), 2829 were eligible for chart review, through 
which an additional 2206 were excluded, yielding 622 stool spec-
imens meeting inclusion and exclusion criteria. From these speci-
mens, we assembled a 186-person cohort split into 3 groups of 62 
patients matched by age and hospital location. These groups were 
defined by laboratory results: toxigenic culture–positive and toxin 
enzyme immunoassay–positive (using the Wample/TechLab Tox 
A/B II assay during routine clinical testing, Cx+/EIA+), toxigenic 
culture–positive and toxin enzyme immunoassay–negative (Cx+/
EIA–), and toxigenic culture–negative and toxin enzyme immu-
noassay–negative (Cx–/EIA–) controls. Cohort demographics and 
clinical characteristics are shown in Table 1.

Fecal metabolome characteristics. To characterize fecal metab-
olomic variations in the study cohort, we detected and quantified 
trimethylsilyl-derivatized fecal extracts using GC-MS. GC-MS is 
sensitive to low-molecular-weight analytes and does not detect 
proteins, peptides, complex lipids, or other macromolecules. We 
detected ions produced by electron ionization (EI), which often-
times provides sufficient structure information to chemically iden-
tify metabolites of interest. Fecal metabolites may originate from 
human cells, microbiome, and/or diet. To compare metabolomes 
between specimens in the study population, GC-MS profiles were 
aligned so that each analyte (hereafter called a feature) is defined 
by its characteristic EI mass spectrum and GC retention time. 
Within the 186 patient specimens, we detected 2540 distinct fea-
tures, 77 of which were removed as contaminants because they 
were present at comparable levels in multiple blank controls, leav-
ing 2463 features for metabolomic analyses. These features were 
sparsely distributed with a heavy tail (Figure 1A), with only 593 fea-
tures appearing in at least 8 (5%) specimens. The number of molec-

cile (by culture or nucleic acid amplification) may be particularly 
susceptible to false-positive results for CDI due to detection of 
inactive spores, while there is concern that toxin detection tests 
are insufficiently sensitive and may yield false-negative results in 
some patients with CDI. Prospects for new approaches to improve 
diagnostic accuracy are therefore of interest.

To better understand the relationship between the intestinal 
metabolome and CDI in humans, we conducted fecal metabo-
lomic profiling of hospitalized patients with diarrheal symptoms 
at an academic medical center. The cohort consists of patients 
with a toxigenic culture positive for C. difficile, either with or 

Table 1. Demographics of patient cohorts, including a summary 
of C. difficile ribotypes

Characteristic CDI (toxigenic 
culture+, toxin EIA+) 

n = 62

Asymptomatically 
colonized (toxigenic 
culture+, toxin EIA–)  

n = 62 

Not colonized 
(toxigenic culture–, 

toxin EIA–)  
n = 62 

Ward at stool collection
Ward 50 (81%) 50 (81%) 50 (81%) 
Oncology 9 (15%) 9 (15%) 9 (15%) 
ICU 3 (5%) 3 (5%) 3 (5%) 
Age, categorical
≤45 10 (16%) 17 (27%) 8 (13%) 
>45–≤65 20 (32%) 22 (36%) 19 (31%) 
>65–≤85 27 (44%) 21 (34%) 28 (45%) 
>85 5 (8%) 2 (3%) 7 (11%) 
Female 35 (57%) 35 (57%) 29 (47%) 
Race
Caucasian 49 (79%) 37 (60%) 44 (71%) 
African American 9 (15%) 22 (36%) 14 (23%) 
Other 0 (0%) 1 (2%) 1 (2%) 
Unknown 4 (7%) 2 (3%) 3 (5%) 
Toxin status
Toxin A 62 (100%) 62 (100%) NA 
Toxin B 62 (100%) 61 (98%) NA 
Binary toxin 26 (42%) 9 (15%) NA 
C. difficile strainA

027 22 (36%) 8 (13%) NA 
106/174 11 (18%) 6 (10%) NA 
WU27 6 (10%) 1 (2%) NA 
002 4 (7%) 3 (5%) NA 
001 4 (7%) 6 (10%) NA 
WU8 3 (5%) 1 (2%) NA 
014/020 2 (3%) 9 (15%) NA 
017 2 (3%) 2 (3%) NA 
WU2 2 (3%) 4 (7%) NA 
WU30 1 (2%) 2 (3%) NA 
WU36 0 (0%) 4 (7%) NA 
075 0 (0%) 4 (7%) NA 
015/046 0 (0%) 2 (3%) NA 
070 0 (0%) 2 (3%) NA 
Other strainB 5 (8%) 8 (13%) NA
AC. difficile strain is given as ribotype (3 digits), or WU strain type if there 
was no match to a Cardiff-ECDC collection ribotype strain. BListed as other 
strain if only a single isolate was recovered.
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relatively few molecular features yielded a large jump in average 
accuracy of the regression model (Figure 2B). We fixed the penalty 
parameter to the value yielding the maximum percent predicted, 
indicated by the star in Figure 2B, and again performed penalized 
logistic regression fit to the Cx+/EIA+ and Cx–/EIA– groups with 
repeated randomized 5-fold cross-validation. The observed distri-
butions of log-odds for the test folds (that is, excluding the train-
ing sets) for Cx+/EIA+ and Cx–/EIA– again demonstrate good sep-
aration (Figure 2C). For comparison, Figure 2C also includes the 
distributions of the log-odds values for the Cx+/EIA– cases. The 9 
metabolite features most consistently associated with Cx+/EIA+ 
specimens (Table 2 and Supplemental Table 1) include both pos-
itive and negative associations. The features consist of 2 SCFAs, 
1 amino acid, 1 bile acid, 1 lipid, 3 carbohydrates, and 1 aromat-
ic alcohol. These results implicate biochemically diverse metab-
olites in human CDI pathogenesis. We then fit a logistic model 
using only the 6 features that were most frequently selected across 
the cross-validation runs. This model achieves a ROC AUC (area 
under the receiver-operator characteristic curve) of 96.7%, with a 
95% confidence interval of 85.6%–100% obtained under repeated 
randomized 5-fold cross-validation (Figure 2D). These results are 
consistent with a strong, characteristic signal that distinguishes 
Cx+/EIA+ specimens from Cx–/EIA– controls.

Stickland amino acid fermentation in CDI. Among the 
most highly CDI-associated metabolites (Table 2) is the SCFA 
4-methylpentanoic acid (4-MPA/4-methylvaleric acid/iso-

ular features per sample was approximately normally distributed 
(Figure 1B; mean 164 features, standard deviation 54 features). 
Principal component analysis (PCA) of log-transformed feature 
intensities revealed no dominant modes of variation, with the first 
principal component explaining less than 10% of the overall vari-
ance in the data (Figure 1, C and D). Fecal metabolomes defined by 
GC-MS thus exhibit a high degree of individual variation, with only 
a small minority of metabolites common to all subjects.

Metabolomic differences between C. difficile–infected and unin-
fected controls. To identify CDI-associated fecal metabolites, we 
conducted a supervised multivariate comparison of Cx+/EIA+ and 
Cx–/EIA– specimens. We used Cx+/EIA+ specimens to represent 
CDI because they harbor viable, toxigenic C. difficile alongside 
evidence of concurrent toxin production. Given the chemical com-
plexity of fecal metabolomes (the >2000 resolved features great-
ly exceed the 124 samples), we employed multiple complemen-
tary measures to avoid overfitting the data, including repeated 
cross-validation (see Methods). Sparse partial least squares-dis-
criminatory analysis (sPLS-DA) (Figure 2A) demonstrates good 
separation between metabolite profiles from the Cx+/EIA+ and 
Cx–/EIA– groups, despite this model’s use of an explicit penalty 
to prevent overfitting. To further assess this relationship, we con-
ducted a separate logistic regression analysis on the Cx+/EIA+ and 
Cx–/EIA– groups with a similar penalization parameter to avoid 
overfitting. Using repeated 5-fold cross-validation with random 
subsets to select an appropriate penalization level, we found that 

Figure 1. Metabolomic characteristics of the patient 
cohort. (A) Histogram showing the distribution of 
feature richness (number of features present per 
sample) across all patient specimens. (B) Histogram 
showing the number of samples within which each 
unique feature is present. Fecal metabolomes were 
highly individualistic: among the more than 2000 
features detected, most were infrequent. While the 
resulting data are very sparse overall, the distribution 
has a relatively heavy tail with a few features present 
in many samples. (C) Principal component analysis 
(PCA) score plot across the first 2 components creat-
ed using log-transformed feature intensities across 
all metabolomic features. (D) PCA does not appear to 
reveal dominant modes of variation, with no single 
component explaining more than 9% of the variance 
and a long tail of modes each explaining approxi-
mately 1% each.
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other canonical Stickland products like 5-aminopentanoic acid 
(5-aminovaleric acid) are frequently present in CDI, they offer 
negligible discriminatory power beyond that of 4-MPA in the 
adjusted analysis.

To more precisely quantify the relationship between 4-MPA 
production and CDI, we devised a targeted GC-MS assay to quan-
tify Stickland fermentation activity through product/precursor 
ratios. In addition to increasing assay sensitivity and precision, 
this targeted biomarker ratio is intrinsically insensitive to the vari-
ations in fecal dilution that characterize diarrheal specimens. In 
an arbitrary subset of matched specimens, the 4-MPA/leucine 
ratio varied significantly between groups (P = 1.3 × 10–8, Krus-
kal-Wallis test). This variation distinguishes Cx+/EIA+ specimens 
from Cx–/EIA– specimens with an ROC AUC of 92.8% (95% CI: 
86.8%–98.7%; Figure 4, A and B) that rivals the 6-feature regres-
sion model described above and in the Methods (Figure 2D; AUC 
= 96.7%; 95% CI: 85.6%–100%).

caproic acid). Unlike the SCFAs formate, acetate, and butyrate, 
which are produced during microbial carbohydrate fermen-
tation, 4-MPA is produced from leucine through the Stickland 
reactions, amino acid fermentation pathways associated with C. 
difficile and other anaerobic bacteria (15–24). Ten established 
Stickland products were detected in the study cohort, repre-
senting both oxidative and reductive fermentation of 8 different 
amino acid precursors (Figure 3A and Supplemental Figure 2). 
These products exhibit varying degrees of association with CDI, 
with 8 of 10 products (80%) detected more frequently in CDI 
specimens than controls (Figure 3B and Supplemental Figure 5). 
Many Stickland products were present in Cx–/EIA– specimens, 
consistent with production by bacteria other than toxigenic C. 
difficile. Bootstrapped logistic regression (fit on 2000 bootstrap 
samples, stratified on Cx/EIA status) of Stickland metabolites 
consistently assigns the highest odds ratios for CDI to 4-MPA, 
the end product of leucine reduction (Figure 3C). Although 

Figure 2. Supervised metabolomic analyses comparing Cx+/EIA+ with Cx–/EIA– samples. (A) Observed separation of Cx+/EIA+ and Cx–/EIA– samples under 
sparse partial least squares–discriminatory analysis (sPLS-DA). The data ellipses are drawn around each group of samples (at the 95% level). (B) Penalized 
logistic regression under repeated 5-fold cross-validation shows how the number of features used relates to the obtained accuracy, yielding high accuracy 
with a relatively small number of features. The maximum percent predicted is indicated by a star. (C) Using the penalty parameter associated with the 
maximum percent predicted, penalized logistic regression demonstrates good separation in the distribution of log-odds to be classified Cx+/EIA+ versus 
Cx–/EIA–. In the log-odds distribution shown here, only the test folds of Cx+/EIA+ and Cx–/EIA– for each randomized cross-validated run are shown (that is, 
the corresponding distribution of the training set is not shown). For comparison, the corresponding log-odds of the Cx+/EIA– samples are also shown.  
(D) Logistic regression (without penalty) to classify Cx+/EIA+ versus Cx–/EIA– was performed using only the 6 features most frequently used in the penal-
ized logistic regressions. Fitting to all samples gives 96.7% ROC AUC. The 95% CI of 85.6%–100% AUC was obtained under repeated randomized 5-fold 
cross-validation using the same 6 features.
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as cholenoic acid and monohydroxycholenoic acid (CE and MHCE, 
respectively, Supplemental Figures 6–11), noncanonical unsatu-
rated, dehydroxylated bile acids. As with DCA and LCA, these bile 
acids were more abundant in the non-CDI group, consistent with an 
alternative bile acid dehydroxylation pathway based on dehydration 
reactions (net loss of H2O to yield a double bond).

Unsaturated, nonhydroxylated bile acids are seldom consid-
ered in the bile acid literature. Their absence from our metabolite 
database compelled us to identify them through manual interpre-
tation of spectra and comparison to chemically related reference 
compounds (Supplemental Figures 6–11). CE, a nonhydroxylated, 
unsaturated bile acid, was previously identified by Robben et al. 
as a lithocholic acid sulfate (LCA-S) desulfation product generated 
by an intestinal isolate of the Bacteroidaceae family (28). Robben 
et al. noted 2 isomeric CE products of these bacteria that differ 
in double bond location. We similarly observed 2 closely eluting 
CE products, consistent with a similar product distribution in our 
patient cohort (Supplemental Figure 9). Human tissues are known 
to generate sulfated bile acids, including LCA-S, which may pro-
vide substrates for fecal CE production through enzymatic desul-
fation (29). These observations are consistent with diminished 
microbial bile acid desulfation activity in patients with CDI.

Identification of a CDI-associated human bile acid network. 
Based on the presence of CE and MHCE in patient specimens, we 
hypothesized that sulfated bile acids (the precursors of unsaturat-
ed bile acids) (28) are also present. We further hypothesized that 
the desulfation mechanism of unsaturated bile acid production 
is generalizable such that an extended series of bile acid sulfates 
and unsaturated bile acids are present in the human fecal metab-
olome (Figure 6B). Using the calculated molecular weights, MS/
MS fragmentation patterns, and chromatographic elution ranges 
for these hypothesized bile acids, we constructed a liquid chroma-
tography–tandem mass spectrometry (LC-MS/MS) assay (Supple-
mental Figures 12–14 and Supplemental Table 4) because sulfated 
bile acids are undetectable by GC-MS. This assay resulted in ten-
tative detection of 14 sulfated bile acids, 6 of which were dehydro-
genated (possessing either an alkene or ketone; Table 3 and ref. 
30). Many of these bile acids are distinguishable only by retention 
time, consistent with isomers that differ in the position(s) of dou-
ble bonds, hydroxyl groups, and/or sulfate.

Together, these results are consistent with a pathophysiolog-
ic role for Stickland fermentation in CDI. While the presence of 
these metabolites in Cx–/EIA– specimens suggests that intestinal 
Stickland metabolism in patients is not generally unique to CDI, 
the selective increase in 4-MPA in CDI specimens raises the pos-
sibility that leucine reduction is a selectively emphasized pathway 
in C. difficile during clinical infections.

The isomeric amino acid allo-isoleucine is associated with CDI. 
Among the metabolites that are positively associated with CDI 
is allo-isoleucine, an isoleucine diastereomer in which the beta 
carbon stereocenter is inverted from an S to an R configuration 
(Figure 5A). This noncanonical, nonproteinogenic amino acid has 
been identified as a biomarker of branched chain ketoaciduria 
(maple syrup urine disease, an inborn error of metabolism) but 
has not previously been associated with C. difficile or CDI. Its ori-
gins in feces are unclear, although a previously reported bacterial 
metabolic pathway producing it from L-isoleucine raises the possi-
bility that it derives from the intestinal microbiome (25). To more 
carefully assess the relationship between allo-isoleucine and CDI, 
we devised a targeted GC-MS assay to quantify allo-isoleucine as 
a ratio to isoleucine, its putative precursor. The allo-isoleucine-to-
isoleucine ratio varied significantly between groups (P = 6.5 × 10–5, 
Kruskal-Wallis test; Figure 5B and Supplemental Figures 3 and 4). 
ROC analysis (Figure 5C) (AUC = 79.7%; 95% CI: 68.2%–91.3%) 
suggested favorable diagnostic potential for distinguishing Cx+/
EIA+ specimens from Cx–/EIA– specimens. These observations 
identify allo-isoleucine as a new and biochemically distinctive 
CDI correlate of unclear origin.

Bile acid metabolic pathways active in patients without CDI. Three 
negatively loaded bile acid features are among the most frequently 
detected Cx+/EIA+ correlates in our cross-validated analysis (Table 
2 and Supplemental Table 1). This corresponds to previous scholar-
ship, which has associated bile acid dehydroxylation by the intestinal 
microbiota with CDI susceptibility (6, 7, 26, 27). Canonical bile acid 
processing by the microbiome involves successive dehydroxylation of 
cholic acid (CA; a tri-hydroxylated primary bile acid) to deoxycholic 
(DCA, a di-hydroxylated secondary bile acid) and chenodeoxycholic 
acid (CDCA; a di-hydroxylated primary bile acid) to lithocholic acid 
(LCA, a mono-hydroxylated secondary bile acid). Unexpectedly, the 
2 most highly CDI-associated bile acids in our cohort were identified 

Table 2. Top CDI-associated metabolites selected during cross-validation of logistic regression model

Feature (mass@RT) FrequencyA Median odds ratio (95% CI) Metabolite Class
173.0@4.71 100% 1.54 (1.41–1.69) 4-methylpentanoic acid, TMS derivativeB SCFA
117.0@4.70 99% 1.16 (1.04–1.30) 4-methylpentanoic acid, TMS derivativeB SCFA
159.0@7.55 99% 1.12 (1.02–1.25) 2-hydroxy-4-methylpentanoic acid SCFA
86.0@6.755 98% 0.91 (0.84–0.98) Isoleucine Amino acid
215.0@24.80 96% 0.87 (0.78–0.98) Cholenoic acid Bile acid
73.0@13.79 95% 0.92 (0.83–0.99) Ribitol Carbohydrate
67.0@20.17 94% 1.11 (1.01–1.24) Eicosatrienoic acid Lipid
179.0@12.06 94% 1.15 (1.02–1.27) Tyrosol, 2TMS derivative Aromatic alcohol
204.0@19.45 91% 0.87 (0.77–0.98) Glyceryl glycoside Carbohydrate
217.0@14.72 89% 0.93 (0.84–0.99) Fructose Carbohydrate
AProportion of cross-validation models including the metabolite. BTwo ions from same metabolite were independently resolved.
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Although fecal bile acids largely originate from 2 primary bile 
acids (CA and CDCA), subsequent host conjugation, divergent 
microbiome cometabolism, and enterohepatic circulation create a 
complex, nonlinear bile acid physiology. To characterize bile acid 
interrelationships, we therefore performed community detection 

(31) on the weighted network of positive correlations among the 14 
noncanonical bile acids described above and 17 canonical conju-
gated and nonconjugated primary and secondary bile acids. Seven 
bile acid communities emerged from this unbiased network com-
munity detection analysis, many of which could be rationalized by 

Figure 3. Amino acid metabolism in C. difficile. (A) Stickland metabolism consists of anaerobic amino acid fermentation through coupled oxidation and reduction 
pathways. In the reductive pathway, amino acids are first deaminated to form 2-hydroxy acids and then reduced to carboxylic acids. In the oxidative pathway, ami-
no acids are deaminated and oxidized with loss of CO2 to yield a distinct set of carboxylic acids. Depicted here are established Stickland substrates and products 
identified within patient fecal metabolomes. Stickland substrates include the nonproteinogenic amino acid ornithine. ND, not determined. (B) Heatmap of Stick-
land precursor and product abundances corresponding to patient fecal metabolomes from the 3 diagnostic groups. Metabolites were organized using unsuper-
vised hierarchical clustering. Metabolites differing significantly (Mann-Whitney U test; *P < 0.05, ***P < 0.001) between Cx–/EIA– and Cx+/EIA+ groups are labeled, 
along with the direction of the difference relative to the Cx–/EIA– control group. Stickland products are labeled according to the color scheme in A. (C) Adjusted and 
unadjusted (crude) CDI odds ratios and confidence intervals (95%) for Stickland precursors and products. Odds ratios were estimate by fitting logistic regression 
models to each of 2000 bootstrap samples stratified on Cx/EIA status (Cx–/EIA– vs. Cx+/EIA+). Logistic models containing a single metabolite were fit to obtain 
crude odds ratios (red). A single logistic model including all metabolites was fit to obtain the adjusted odds ratios (green). Bars represent 95% bootstrap percentile 
confidence intervals and black dots represent median odds ratios across all bootstrap samples. Stickland products are labeled according to the color scheme in A.
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shared chemical features (Table 3 and Figure 6A). Where unavail-
ability of authentic internal standards prevents identification of 
hydroxylation sites (e.g., the 3, 7, and 12 carbon positions) or epi-
mers, bile acids are designated with general names. Communities 
1 to 3 are composed exclusively of canonical primary and second-
ary bile acids. Community 1 consists of classic primary bile acids 
while community 2 consists of their glycine or taurine conjugates. 
Community 3 consists of conjugated secondary (dehydroxylated) 
bile acids. Community 4 includes secondary bile acids, second-
ary bile acid sulfates, and 1 candidate di-hydroxylated cholenic 
acid sulfate. Communities 5 and 6 consist entirely of sulfated bile 
acids, with a single sulfated cholenic acid candidate. The 5 bile 
acids in community 7 are all sulfated, with 4 cholenic acid sulfate 
candidates. The 5 candidate dehydroxylated cholenic acid sulfates 
may plausibly include sulfated keto bile acids, secondary bile acids 
of identical mass. In a force-directed layout depicting this network 
(Figure 6A), the primary bile acids (CA, CDCA) are located cen-
trally, consistent with their recognized roles as precursors to con-
jugated and secondary bile acids. Clockwise progression moves 
from bile acid communities defined by host glycine and taurine 
conjugation, to classical microbial dehydroxylation, to sulfation, 
to desaturation or ketone formation (Figure 6B). The community 
organization emerging from this analysis reflects the distinctive 
metabolic transformations identified in the present study and in 
previous work.

Bile acid metabolomic associations with CDI. Disruption of 
microbiome-mediated bile acid metabolism has long been regard-
ed to increase CDI risk. In our inpatient cohort, we hypothesized 
that the Cx–/EIA– group includes a subset of patients with disrupt-
ed, CDI-susceptible microbiomes. To test this hypothesis, we used 
PCA to graphically summarize bile acid metabolomic variation in 
culture-negative specimens (Figure 7, A and B). Next, we project-
ed Cx+/EIA+ bile acid profiles onto these principal components. 
Consistent with the hypothesis, Cx+/EIA+ specimens preferential-

ly occupied a restricted portion of the Cx–/EIA– patient bile acid 
profile distribution. Specifically, Cx+/EIA+ specimens preferen-
tially exhibit elevated values along the first PCA-derived principal 
component (PC1). High PC1 scores correspond to higher primary 
(cholic and chenodeoxycholic) and low secondary (deoxycholic 
and lithocholic) bile acids (Figure 7D), similar to previous stud-
ies (26, 27). Low PC1 scores correspond to higher levels of sulfat-
ed and dehydroxylated cholenic and cholanic acids (DHCA-S3, 
DHCE-S3, LCA from community 4). ROC analysis using PC1 as 
the discriminator revealed an AUC of 61.3% (Figure 7C). These 
results are consistent with a negative association between CDI 
and bile acid sulfation, dehydroxylation, and unsaturation. While 
we cannot conclude a causative role from these correlative data, 
these metabolic processes may indicate the presence of a CDI-re-
sistant intestinal microbiome.

Fecal carbohydrate associations with CDI. We next hypothesized 
that the Cx–/EIA– group includes patients with CDI-susceptible 
intestinal metabolites other than bile acids. To test this hypothe-
sis, we used PCA to graphically summarize total GC-MS detect-
able metabolomic variation in culture-negative specimens. Next, 
we projected CDI patient metabolomes onto these principal com-
ponents. Consistent with the hypothesis, CDI patient fecal metab-
olomes occupy a restricted portion of the uncolonized patient 
distribution, characterized by a high PC1 score (Figure 8, A and 
B). ROC analyses of PC1 scores yielded a modest AUC of 61.1% 
when distinguishing Cx+/EIA+ from Cx–/EIA– specimens (Figure 
8C). These metabolites are not clearly related to bile acid compo-

Figure 4. 4-MPA/leucine ratio elevated in CDI. (A) Dot plots of 4-MPA/
leucine product/precursor ratios measured by targeted (SIM) reanalysis 
of fecal specimens (n = 32 for each group). Patient groups were compared 
using the Kruskal-Wallis test (P = 1.3 × 10–8). To further characterize 
pair-wise differences between groups, Bonferroni-corrected Mann-Whit-
ney U test P values are indicated (3 comparisons; NS: P ≥ 0.05, ***P < 
0.001). Ratio thresholds giving perfect specificity (0.0825, black star) or 
sensitivity (0.00132, white star) for CDI+/EIA+ are marked as gray dashed 
lines. (B) Receiver-operator characteristic (ROC) plot distinguishing Cx+/
EIA+ patients from Cx–/EIA– patients. The gray region represents the 
bootstrapped 95% confidence interval for the true-positive rate at each 
false-positive rate. Thresholds with perfect specificity or sensitivity are 
marked by stars, as in A.

Figure 5. Isoleucine isomer correlated with C. difficile. (A) Chemical 
structures of isoleucine and its diastereomer, allo-isoleucine. (B) Dot plot 
of allo-isoleucine/isoleucine ratios as measured by SIM (n = 32 for each 
group). Patient groups were compared using the Kruskal-Wallis test (P = 
6.5 × 10–5). To further characterize pair-wise differences between groups, 
Bonferroni-corrected Mann-Whitney U test P values are indicated (3 
comparisons; NS: P ≥ 0.05, ***P < 0.001). (C) ROC plot showing ability 
to distinguish Cx+/EIA+ patients from Cx–/EIA– patients. The gray region 
represents the bootstrapped 95% confidence interval for the true-positive 
rate at each false-positive rate.
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applied (corresponding to >50% probability), Cx+/EIA+ specimens 
clustered in the high 4-MPA/leucine and high bile acid PC1 quad-
rant (Figure 9, A and B). ROC analysis of this model yields an AUC 
of 98.2%, out-performing the original 6-feature model described 
above (Figure 9C). Each parameter contributed independently—
adding a term for interaction between 4-MPA/leucine ratio and bile 
acid PC1 did not significantly improve the logistic model (P = 0.53, 
analysis of deviance). These results are consistent with distinctive 
host and microbial metabolic processes in human CDI.

Metabolomic differences in colonized patients with and without 
detectable fecal toxin. To determine whether Cx+/EIA– specimens 
possess distinctive metabolomes, we compared 4-MPA/leucine 
and bile acid composition profiles from Cx+/EIA– specimens to 
those of Cx+/EIA+ or Cx–/EIA– specimens. In the logistic regression 
model, only 38% (20/32) resembled Cx+/EIA+ specimens, with the 
remainder exhibiting low 4-MPA/leucine ratios in specimens with 
or without susceptible bile acid profiles (Figure 9, A and B). These 
observations are consistent with low C. difficile metabolic activity 
and a protective bile acid profile in many patients with undetect-
able fecal toxin. Using the logistic regression parameter compared 
with toxigenic culture or toxin EIA results alone defines a positive 
test group that is smaller than (but almost entirely encompassed 
by) toxigenic culture–positive specimens but greater than the 
number of toxin EIA–positive specimens (Figure 9D). If the met-
abolic criterion is highly accurate, it may restrict false-positive 
results from toxigenic C. difficile detection alone and also restrict 
false-negative results from the toxin EIA test. Further study is nec-
essary to determine whether this possibility can be realized.

Discussion
In this study, we compared the fecal metabolomic profiles from 
186 hospitalized patients to investigate relationships between 
fecal metabolites, the presence of toxigenic C. difficile, and the 
presence of detectable C. difficile toxins. Untargeted metabolomic 
profiling in the context of uncontrolled patient dietary and micro-
biome contributions yielded extremely diverse fecal metabo-
lomes. Nevertheless, numerous CDI-associated metabolites were 
resolved. Among the 2463 features detected in this cohort, 43 had 
some ability to resolve CDI from uncolonized controls. Many of 
these discriminatory molecules are associated with Stickland and 
bile acid metabolism, processes previously implicated in CDI 
pathogenesis (6–9, 18, 19, 23, 26, 27, 34, 35). The specific molec-
ular signatures best able to resolve CDI from controls exhibit only 

sition, since the total metabolome PC1 exhibits a low degree of 
association with the bile acid PC1 determined above (r2 < 0.007; 
Supplemental Figure 17). Instead, high PC1 scores are primarily 
characterized by diminished monosaccharides, disaccharides, 
and sugar alcohols with uncertain relationships to CDI (Figure 8D 
and Supplemental Figure 16). While these metabolite classes can 
be reasonably identified by GC-MS, identifying specific isomers is 
often unreliable (e.g., sorbitol and mannitol are both C6H14O6 and 
differ only in the orientation of 1 hydroxyl group and yield compa-
rable spectra). The monosaccharide fructose, a favored C. difficile 
carbon substrate (32), emerged as a negative CDI correlate in the 
logistic regression analysis above (Table 2), raising the possibili-
ty that some carbohydrates may be consumed by metabolically 
active C. difficile. Trehalose, a disaccharide recently reported to 
be a favored substrate of epidemic C. difficile ribotypes 027 and 
078, was not identified in our differential analysis (33). To more 
carefully assess the relationship between trehalose and CDI, we 
quantified fecal trehalose using a targeted GC-MS analysis based 
on stable isotope dilution with a 13C6-labeled internal standard 
(Supplemental Figure 15). It was detectable in 61% (115/189) of 
specimens but did not distinguish Cx+/EIA+ from Cx–/EIA– spec-
imens (35/63 vs. 41/63, P = 0.36, 2-tailed Fisher’s exact test). In 
027-positive specimens, trehalose also did not distinguish tox-
in-positive from toxin-negative specimens (6/8 vs. 12/23, P = 0.41, 
2-tailed Fisher’s exact test). A subset of fecal carbohydrates thus 
has some potential to distinguish CDI and possibly CDI-suscepti-
ble patients, though the basis for this remains unclear.

A metabolomic model of CDI. To determine whether fecal Stick-
land metabolites and bile acids can be used to construct a metab-
olomic definition of CDI, we conducted logistic regression using 
the 4-MPA/leucine ratio (log10-transformed) and the bile acid PC1 
(Table 4 and Figure 9A). Each parameter alone exhibited significant 
(P < 0.05) independent associations with Cx+/EIA+ status when com-
pared with Cx–/EIA– specimens. When the logistic model criterion is 

Figure 6. Bile acid transformations in the clinical cohort. (A) A force-directed 
network layout illustrates associations between bile acids in the study cohort. 
Each node represents a bile acid and each connecting line (edge) represents 
an association between 2 bile acids as 1 of the 5 highest correlations for at 
least 1 of the corresponding nodes. Edge lengths are determined by the level 
of correlation between connected bile acids. Nodes are colored by commu-
nity assignment. (B) Scheme showing metabolic transformations producing 
bile acids in the network analysis. The central structure highlighted in gray 
represents a tri-hydroxylated primary bile acid (e.g., cholic acid). Taurine or 
glycine conjugation forms peptide bonds to the carboxylic acid group (right). 
Alcohol groups are removed from the bile acid nucleus (dehydroxylation, 
bottom right) or oxidized to a ketone (top left). Bile acid sulfation involves 
substitution of an alcohol group with a sulfate (R = SO4

–) group (bottom left). 
Desulfation of bile acid sulfates yields unsaturated bile acids (left).
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in Cx–/EIA– patient microbiomes, which may be limited or absent 
in the antibiotic-treated mice used in experimental CDI models. 
4-MPA has not been uniformly identified as a CDI correlate in 
metabolomic studies of murine CDI. This may reflect host-associ-
ated substrate selection of leucine for Stickland metabolism by tox-
in-producing C. difficile but may also reflect lack of detection due to 
the apparent insensitivity of typical untargeted LC-MS approaches 
to 4-MPA (unpublished observations). Indeed, GC-MS remains a 
favored modality for SCFA analyses by many investigators. Never-
theless, the implication of Stickland fermentation in CDI is gener-
ally consistent with previous human and animal model studies.

The association between Stickland fermentation and CDI is 
consistent with the hypothesis that fecal amino acid availability 
enhances CDI susceptibility. Our data do not rule out an import-
ant role for carbohydrate metabolism, the C. difficile fermentation 
products of which (pyruvate, formate, acetate, butyrate) are less 
distinctive than Stickland metabolites (18). Although we observed 
no association between CDI and fecal trehalose, a glucose disac-

partial overlap with those identified in prior metabolomic studies 
using mouse models, which may reflect species differences, the 
presence of a variable host microbiome background, and the spe-
cific mass spectrometric approach. Toxin-negative, toxigenic C. 
difficile–positive (Cx+/EIA–) specimen metabolomes span a metab-
olomic continuum ranging from control-like to CDI-like. Among 
Cx+ specimens, fecal metabolites have the potential to distinguish 
infected from colonized patients.

Identification of 4-MPA as the most prominent CDI correlate 
is consistent with its production by C. difficile from leucine during 
Stickland metabolism. Other Stickland products were also detect-
ed and observed to be elevated in patients with CDI, although their 
abundance among the control specimens (Cx–/EIA–) diminished 
some of their associations (low positive predictive value), especial-
ly that of 5-aminopentanoic acid. This contrasts with previously 
reported murine studies in which multiple Stickland metabolites 
are highly CDI-associated. The discrepancy between patient and 
mouse studies likely arises from Stickland-metabolizing organisms 

Table 3. Fecal bile acids monitored by LC-MS/MS

CommunityA Abbreviation NameB PrimaryC Hydroxylations,  
no.

Conjugation,  
type

Sulfate Unsaturated

1 CA Cholic acid Yes 3
MCA α-Muricholic acid Yes 3
CDCA Chenodeoxycholic acid Yes 2
UDCA Ursodeoxycholic acid Yes 2

2 G-CA Glycocholic acid Yes 3 Glyco
T-CA Taurocholic acid Yes 3 Tauro
HDCA Hyodeoxycholic acid Yes 2
G-CDCA Glycochenodeoxycholic acid Yes 2 Glyco
G-UDCA Glycoursodeoxycholic acid Yes 2 Glyco
T-CDCA Taurochenodeoxycholic acid Yes 2 Tauro
T-UDCA Tauroursodeoxycholic acid Yes 2 Tauro

3 G-DCA Glycodeoxycholic acid 2 Glyco
T-DCA Taurodeoxycholic acid 2 Tauro
T-LCA Taurolithocholic acid 1 Tauro
G-LCA Glycolithocholic acid 1 Glyco

4 DCA Deoxycholic acid 2
LCA Lithocholic acid 1
DHCA-S3 Dihydroxycholanic acid sulfate-3 2 Yes
DHCE-S3 Dihydroxycholenic acid sulfate-3D 2 Yes Yes
MHCA-S2 Monohydroxycholanic acid sulfate-2 1 Yes

5 LCA-S Lithocholic acid sulfate 1 Yes
DHCE-S5 Dihydroxycholenic acid sulfate-5D 2 Yes Yes
DHCA-S2 Dihydroxycholanic acid sulfate-2 2 Yes
DHCA-S5 Dihydroxycholanic acid sulfate-5 2 Yes

6 DHCA-S1 Dihydroxycholanic acid sulfate-1 2 Yes
DHCA-S4 Dihydroxycholanic acid sulfate-4 2 Yes

7 DHCE-S1 Dihydroxycholenic acid sulfate-1D 2 Yes Yes
DHCE-S2 Dihydroxycholenic acid sulfate-2D 2 Yes Yes
DHCE-S4 Dihydroxycholenic acid sulfate-4D 2 Yes Yes
MHCA-S1 Monohydroxycholanic acid sulfate-1 1 Yes
MHCE-S1 Monohydroxycholenic acid sulfate-1 1 Yes Yes

ABile acids monitored by LC-MS are listed in order of community assignment (Figure 6). BWhere a reference standard is available to confirm chemical 
identity, the common name is used. Where lack of a reference standard prevents isomeric assignment, a candidate chemical structure is provided in italics. 
CBile acids are marked “primary” if they have a known host biosynthetic origin. DAlternatively, structure may include a keto group.
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In addition to implicating C. difficile metabolic pathways in 
CDI patients, the present study also identifies a series of CDI-as-
sociated bile acids. Previous mouse model studies have identified 
associations between diminished fecal secondary bile acids and 
increased C. difficile fecal colonization, which agrees with the 
general findings of the current study (6–9). Differences in specif-
ic bile acids between this study and murine studies likely reflect 
both species differences (murine bile acids exhibit substantial 
6-hydroxylation compared with humans) and different analytical 
approaches. Human cells synthesize and chemically conjugate 
bile acids, whereas intestinal microbes have been shown to modi-
fy them through dehydroxylation at the 7-carbon position to yield 
deoxycholic and lithocholic acids (from cholic and chenodeoxy-
cholic acids, respectively). Here, unbiased detection of 2 cholenic 
acids (cholenic and hydroxycholenic acids, Supplemental Figures 
6–11 and Supplemental Table 3) by GC-MS profiling as the most 
highly CDI-associated bile acids raises the possibility that bene-
ficial microbes can also dehydroxylate bile acids at the 3-carbon 
position, leaving behind unsaturated, nonhydroxylated bile acids. 
Detection of monohydroxycholenic acid sulfate (MHCE-S1, Table 
3) provides additional evidence of this pathway. Five additional 
bile acid sulfate candidates may represent either cholenic acids 

charide generated during bacterial stress responses, utilized as a 
food additive, and proposed as a dietary risk factor for CDI caused 
by hypervirulent strains (ribotype 027; Table 1), the other fecal car-
bohydrates detected in this study may plausibly serve as metabolic 
substrates (33). A recent study by Battaglioli et al. observed a broad 
spectrum increase in fecal amino acid concentrations in gnotobi-
otic mice colonized with dysbiotic human gut microbiota. This 
increase corresponded to high fecal C. difficile colonization after 
experimental challenge (35). In the present study, amino acids tend 
to be diminished in CDI specimens compared with controls (Figure 
3, B and C, and Supplemental Figure 18). This apparent contradic-
tion may be reconciled by interpreting the decrease in amino acids 
during CDI as evidence of consumption by metabolically active C. 
difficile, which yields the aforementioned Stickland products. The 
importance of amino acid substrate selection by C. difficile during 
clinical CDI remains unclear. The present data are consistent with 
a preference for branched chain amino acids (leucine, isoleucine, 
and valine) relative to other intestinal microbes, though it is pos-
sible that other Stickland substrates, such as proline, tyrosine, 
phenylalanine, and ornithine, could substitute for branched chain 
amino acid deficiencies. If so, gut microbiota that deplete a broad 
range of fecal amino acids may help hosts resist CDI.

Figure 7. The bile acid distribution in patients with CDI resembles that of a characteristic subgroup of uninfected, hospitalized patients. (A) Depicted 
here is a PCA plot of uninfected patients’ bile acid profiles (green, n = 62). Onto this space, we projected the bile acid metabolome of patients with CDI 
(red, n = 62). Data ellipses are drawn around each group of samples (95% level). Clustering of CDI specimens at high PC1 values is consistent with a favored 
bile acid distribution among patients with CDI. (B) Dot plot of PC1 scores for each patient sample (n = 62 in each group). Gray dashed line represents opti-
mal PC1 threshold for distinguishing Cx–/EIA– from Cx+/EIA+ samples. This threshold was chosen by maximizing the sum of percent sensitivity and spec-
ificity. (C) ROC plot evaluating the ability of PC1 to distinguish CDI patients from controls. The gray region represents the bootstrapped 95% confidence 
interval for the true-positive rate at each false-positive rate. An asterisk marks the point corresponding to the optimal PC1 threshold depicted in B. (D) PCA 
loading plot depicting the relative contributions of each bile acid to the distribution of Cx–/EIA– samples in A. Abbreviations are indicated in Table 3.
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growing C. difficile. Moreover, individualized metabolomic infor-
mation on whether an unfavorable bile acid profile is present could 
guide microbiome-directed interventions such as fecal transplant 
or probiotic administration. The signatures identified here may aid 
larger patient studies aimed at assessing the value of this approach.

In summary, this metabolomic study suggests specific host, 
pathogen, and microbiome factors associated with CDI pathogene-
sis. Strengths of this study include use of a valid clinical study popu-
lation with relevant control specimens and comparison to clinically 
accessible test results, use of an unbiased screening approach, use 
of multiple mass spectrometric methods, and use of strategies to 

or keto-bile acids, both of which would exhibit ions 2 mass units 
below their canonical counterparts. It remains unclear wheth-
er cholenic acids are solely CDI-negative patient biomarkers or 
whether their formation protects patients from CDI (34). Produc-
tion of these bile acids might confer CDI protection through con-
sumption of progermination bile acids or by direct inhibition of C. 
difficile spore germination. Additional experimental work is nec-
essary to evaluate these possibilities and could help identify desir-
able microbiome constituents for future therapeutic strategies.

The biochemical signatures resolved in this study suggest a 
metabolomic model of human CDI. In addition to identifying ther-
apeutic strategies, such a model may also identify new or refined 
diagnostic approaches to appropriately identify patients who 
would benefit from treatment. Current diagnostic approaches are 
based on nucleic acid–based detection of toxigenic C. difficile and 
immunoassay-based detection of fecal toxin, each of which raise 
valid concerns over their associated false-positive and false-neg-
ative rates (3, 10, 36). The metabolomic profiles identified in the 
current work are biochemically distinct from existing tests and, in 
a multistep diagnostic approach with existing tests, could improve 
diagnostic accuracy. Detection of Stickland metabolites would be 
consistent with the presence of antibiotic-responsive, vegetatively 

Table 4. Logistic regression model of CDI metabolome

Parameter Crude odds ratio 
(95% CI)

Adjusted P valueA

Log10(4-MPA index) 2.09 (2.01–6.06) 4.06 (2.15–7.53) <0.0001
Bile acid PC1 0.15 (0.01–0.30) 0.71 (0.31–1.42) 0.033
AAnalysis of deviance comparison between single-parameter logistic 
regression model and the null logistic regression model.

Figure 8. Principal component analysis of GC-MS–defined metabolome in the clinical cohort. (A) Depicted here is a PCA plot of uninfected patients’ 
GC-MS metabolomes (green, n = 62), onto which is projected the GC-MS metabolomes of patients with CDI (red, n = 62). Data ellipses are drawn around 
each group of samples (95% level). The clustering of CDI specimens at high PC1 values is consistent with a favored metabolomic profile among patients 
with CDI. (B) Dot plot of PC1 scores for each patient (n = 62 in each group). Gray dashed line depicts the PC1 threshold that maximizes the sum of percent 
sensitivity and specificity for distinguishing Cx–/EIA– from Cx+/EIA+ samples. (C) ROC plot evaluating the ability of PC1 to distinguish between CDI patients 
and controls. The gray region represents 95% confidence intervals bootstrapped for the true-positive rate at each possible false-positive rate. An asterisk 
marks the point corresponding to the optimal PC1 threshold depicted in panel B. (D) Plot of PC1 and PC2 loadings for all 2539 GC-MS features. It depicts the 
relative contributions of each GC-MS feature to the distribution of Cx–/EIA– samples in the PCA projection in A. Features in the top or bottom 1% of PC1 
loadings tentatively identified as sugars or sugar alcohols are highlighted in blue.
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Board with a waiver of informed consent to use specimens for this 
study. Patient and specimen evaluation for this cohort has recently 
been described (14). From August 2014 through September 2016, the 
Barnes-Jewish Hospital (BJH) Microbiology Laboratory detected the 
presence of toxin A and B in these specimens using the Alere TOX A/B 
II toxin enzyme immunoassay (EIA).

Inclusion and exclusion criteria. To identify and exclude patients with 
a potential alternate cause of diarrhea, BJH medical informatics databas-
es were queried to identify patients with these conditions and medica-
tions. Patient charts lacking an identifiable alternate cause of diarrhea 
were reviewed to determine whether the patient had clinically signif-
icant diarrhea, and to confirm that there were no other known causes 
of diarrhea. If it was not possible to determine whether the patient had 
clinically significant diarrhea based on the medical records, the speci-
men was excluded. Specimens that were toxin negative (EIA–) were also 
excluded if the patient received treatment for CDI within 14 days of stool 
specimen collection. Due to these rigorous criteria, patients that were 
toxin positive (EIA+) were considered to have CDI and patients who were 
EIA– but positive for a toxigenic strain of C. difficile (defined by the pres-
ence of tcdA and/or tcdB by PCR; Cx+) were considered colonized with 
toxigenic C. difficile but with diarrhea due to other reasons. EIA– stools 
were also excluded if the patient was receiving antibiotics that could treat 
CDI to better ensure that patients with Cx+/EIA– stool did not have CDI.

avoid the overfitting issues inherent in many comparative metabo-
lomic approaches. The uniquely high chromatographic resolution 
and informative electron ionization spectra of GC-MS analysis was 
likely essential to our detection of 4-MPA, allo-isoleucine, and cho-
lenoic acid, analytes that are poorly detected or resolved under typ-
ical LC-MS conditions. Moreover, the ability to identify metabolites 
using spectrally rich EI fragmentation spectra in GC-MS allowed 
us to place our analytic findings within a broader biological con-
text. GC-MS is, however, restricted to small thermostable analytes, 
a notable limitation of this modality when compared with LC-MS. 
Other limitations of this study include its observational nature, lack 
of longitudinal data, lack of nondiarrheal control specimens, and 
insensitivity to host and pathogen-derived macromolecules (pro-
teins, complex lipids, etc.). This work identifies a potential diagnos-
tic approach to CDI as well as new hypotheses for future evaluation 
regarding host bile acid networks’ interaction with CDI.

Methods
Patient specimen collection. This cohort was derived from samples sub-
mitted for physician-ordered C. difficile toxin testing as part of routine 
clinical care. Remnant specimens that would have been otherwise dis-
carded were frozen at –80°C by the laboratory for future use. Approval 
was obtained from the Washington University Institutional Review 

Figure 9. Interrelationships between host- and C. difficile–associated metabolites.  (A) Plotting bile acid PC1 (Figure 7) versus 4-methylpentanoic acid index 
(Figure 4) reveals that high PC1 score and high 4-methylpentanoic acid index values coincide in patients with CDI compared with control patients (n = 32 for each 
group). The dashed line marks the dividing line assigned 50% probability of being Cx+/EIA+ by a logistic regression model incorporating both PC1 and 4-methyl-
pentanoic acid index. (B) Probabilities assigned to each patient by the logistic regression model (n = 32 per group). Higher values indicate higher certainty of Cx+/
EIA+ status. The gray line marks the 50% probability cutoff above which samples are considered Cx+/EIA+. (C) ROC curve showing the performance of the logistic 
regression model in discriminating Cx–/EIA– patients from Cx+/EIA+ patients. The gray region represents 95% confidence intervals bootstrapped for the true-pos-
itive rate at each possible false-positive rate. The AUC and its 95% confidence interval are also reported. (D) Euler diagram showing the overlap between culture, 
EIA, and metabolome status. Samples were considered metabolome-positive if assigned a probability above 50% by the logistic regression model.
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using a Turbo V ESI ion source. Authentic bile acid standards (Table 3) 
were purchased and used to prepare 1 μM samples in 80% methanol. 
HPLC was conducted with a 0.4 mL/min flow rate using the following 
gradient: Solvent A (0.1% formic acid) and Solvent B (90% acetoni-
trile with 0.1% formic acid) were held constant at 95% and 5%, respec-
tively, for 1 minute. Solvent B was increased to 98% by 8 minutes, held 
at 98% for 1 minute, and then reduced again to 5% in 1 minute. The 
column was equilibrated in 5% Solvent B for 3 minutes between runs. 
Optimized instrument settings are reported in Supplemental Table 4.

Data preparation. Ion chromatograms were used to align peaks 
and determine peak areas using Mass Profiler Professional software 
(Agilent) for GC-MS data and Analyst (AB Sciex) for LC-MS/MS data 
from the QTrap. Because of the large dynamic range and strong skew 
of feature intensities, we transformed observed signals at level x to 
log10(1+x) values prior to multivariate analyses.

Sparse logistic regression. We use the framework of logistic regres-
sion models to classify samples using their measured metabolomic 
features. Since there are many more metabolomic features than there 
are samples, we employed multiple measures to avoid overfitting the 
data. First, we enforced sparsity with an L1 penalty on the number of 
parameters selected as shown in Equation 1.

					     (Equation 1)

Equation 1. This analysis is incorporated as part of the python mod-
ule scikit-learn (38). The L1 penalty introduces a trade-off between 
model goodness of fit and the number of incorporated features that is 
tunable by an additional penalization parameter, C, in Equation 1. Sec-
ond, we evaluated model performance using repeated 5-fold cross-val-
idation with random subsets to optimize the sparsity penalty, as well as 
to identify which features were used most frequently and were consis-
tently predictive on the hold-out (testing) sets. Because overfitting on 
training data is generally expected to reduce performance on a hold-
out set, this procedure allowed us to identify the penalization level that 
maximizes expected performance on the testing set.

Finally, we obtained the 6-feature logistic regression described 
in the main text though combination of the results from our repeat-
ed 5-fold cross-validated L1-penalized regressions, selecting the 6 
metabolomic features most frequently obtained in these sparse logis-
tic regressions. Using only those 6 features, we performed logistic 
regression (not L1-penalized) on the 124 samples, obtaining the 96.7% 
AUC in Figure 2D. We established 95% confidence intervals by further 
5-fold cross-validation, keeping the 6 features fixed but varying their 
coefficient contributions according to each training subset, yielding 
the 95% CI: 85.6%–100%.

By way of contrast, we compared these results to a logistic regres-
sion performed on the full set of features without any sparsity criteria. 
As expected, since there are an order of magnitude more features than 
samples, it was possible to select regression coefficients that perfectly 
separate (AUC = 1) the 2 classes in this case. However, this separation 
is potentially meaningless because of overfitting. Similarly establish-
ing a 95% confidence interval by 5-fold cross-validation, using all 
metabolomic features, yields the 95% CI: 84.6%–99.5%. While this 
is still very high—and indeed, is comparable to the CI for our regres-

C. difficile culture and characterization. Briefly, 1 g stool was heat 
shocked at 80°C for 10 minutes. The specimen was then placed into 
cycloserine, cefoxitin, mannitol broth with taurocholate and lysozyme 
(Anaerobe Systems) and incubated anaerobically at 35°C. When tur-
bid, broth was streaked onto prereduced blood agar (BAP, Becton, 
Dickinson and Company). C. difficile was identified by matrix-assisted 
laser desorption/ionization time of flight (MALDI-TOF MS). Isolates 
were evaluated for the presence of tcdA, tcdB, and binary toxin genes 
(cdtA/cdtB) by multiplex PCR. PCR ribotyping was then performed. 
The ribotyping banding patterns were analyzed using DiversiLab 
Bacterial Barcodes software. Similarity of at least 95% was required 
for isolates to be considered identical. All unique strains were com-
pared with the Cardiff-ECDC collection of C. difficile strains for name 
assignment. Isolates that did not match to a strain in the Cardiff-EC-
DC collection were compared with unique strains in the Washing-
ton University collection for name assignments. Isolates that did not 
match strains in the Cardiff-ECDC collection or Washington Universi-
ty collection were assigned a unique name.

Fecal extracts. Stool specimens were thawed on ice and approx-
imately 0.1 mg of each was transferred to a microfuge tube and 
weighed. MeOH (1.25 mL, 70%) was added to each stool sample. The 
samples were sealed with parafilm, vortexed for 10 seconds, and rotat-
ed in a cold room for 2 hours. The samples were vortexed, decanted 
into a microcentrifuge tube and centrifuged at 20817 × g in a desktop 
centrifuge for 15 minutes at 4°C. The supernatant was decanted into a 
tube and stored at –80°C until analysis.

Gas chromatography–mass spectrometry (GC-MS). Stool extract 
(30 μL) was pipetted into a glass vial, dried under N2, and derivatized 
with 100 μL MSTFA (N-Methyl-N-trimethylsilyltrifluoroacetamide)/
CH3CN/pyridine(1:2.6:0.4), heated at 70°C for 30 minutes, then 
cooled at room temperature overnight. Derivatized samples were 
analyzed using an Agilent 7890A gas chromatograph interfaced to 
an Agilent 5975C mass spectrometer and equipped with an HP-5MS 
column (30 m, 0.25 mm i.d., 0.25 μm film coating). For GC, an initial 
temperature of 80°C for 2 minutes was followed by a linear gradient 
to 300°C at 10°C/minute followed by a 5-minute elution at 300°C. EI 
was conducted with source temperature, electron energy, and emis-
sion current of 250°C, 70 eV, and 300 μA, respectively. The injector 
and transfer line temperatures were 250°C. For metabolite profiling 
and spectral analysis, the quadrupole was scanned from 50 to 650 m/z 
units. Structural information about GC-EI-MS features was obtained 
through spectral matching with the NIST 14 spectral library.

For targeted analyses of specific metabolites, the mass spectrom-
eter monitored specific diagnostic ions for each compound. Each tar-
geted metabolite was quantified in the selected ion monitoring mode 
in which ion chromatogram peak areas were determined at their cor-
responding retention times (Supplemental Tables 2 and 3). For treha-
lose, stable isotope-labeled 13C-trehalose was added to each specimen 
as an internal standard before derivatization (37). The peak areas of 
trehalose and 13C internal standards were calculated as a ratio (Supple-
mental Figure 15).

Measurement of bile acids by liquid chromatography-mass spectrom-
etry. LC-ESI-MS/MS detection of each bile acid in fecal specimens or 
reference standards was performed with a Shimadzu UFLC coupled to 
a BetaSil C18 HPLC column (50 mm × 2.1 mm × 3 μm; Thermo Fisher 
Scientific) and an AB Sciex API 4000 QTrap mass spectrometer (AB 
Sciex) running in negative-ion electrospray ionization mode (ESI) 
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relations associated with each bile acid (5 nearest neighbors). Com-
munities were detected from this network using the GenLouvain and 
CHAMP packages (31, 42, 43). We selected the obtained 7-community 
partition for visualization in Figure 6A, with the network layout pro-
duced by the ForceAtlas2 algorithm in Gephi (http://gephi.org) (44).

Study approval. Approval was obtained from the Washington Uni-
versity Institutional Review Board with a waiver of informed consent 
to use specimens for this study. Patient and specimen evaluation for 
this cohort has recently been described (14).
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sion using only 6 features—the outlier nature of the artificial perfectly 
separated result trained using all of the data is a warning of possible 
overfitting. At the same time, we noted that even with this potential for 
overfitting using all of the data, it performed no better than our 6-fea-
ture regression in terms of CI, while the 6-feature model of course pro-
vided much greater ease of interpretation.

We noted that this regression analysis on log-transformed signals 
does not normalize across samples, nor employ methods to treat the 
data in a compositional framework, despite the fact that relative abun-
dances of metabolites are the biologically meaningful quantity. Nev-
ertheless, this analysis successfully identifies features whose ratios are 
informative in predicting classes (see main text).

Sparse partial least squares–discriminatory analysis (sPLS-DA). To 
further assess the consistency of our data analysis results, we employed 
sPLS-DA to find a low-rank approximation of the feature data set that 
aims to maximally preserve the covariance between the dependent 
variable (EIA status) and the independent variables (the features) (39, 
40). This technique identifies a matrix decomposition similar to PCA 
that best explains the relationship between the variables of interest 
using the fewest number of features possible. This analysis was con-
ducted using the R package mixOmics (41). We conducted both single- 
and multivariable prediction using sPLS-DA. PLS-DA attempts to find 
a single decomposition of both the observations and the variable of 
interest such that the covariance between the projected observations 
and the projected variables is maximized in the projected space. In 
this setting with many more features than observations (p >> n), there 
are typically many low-dimensional combinations of features that 
can capture variation in the variable of interest; moreover, these com-
binations will be typically dense in the sense that most features will 
appear with small but nonzero contributions to prediction. In contrast, 
the sparse version of PLS-DA, sPLS-DA, simultaneously models the 
observations while performing feature selection by maximizing the 
original objective function under conditions to minimize the number 
of features incorporated.

Network-based analysis of bile acids. The network representation 
of detected bile acids was defined here using the correlations across 
all 186 samples as edge weights, keeping the 5 highest positive cor-
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